화학공학소재연구정보센터
Materials Science Forum, Vol.510-511, 1106-1109, 2006
Effects of multiwalled carbon nanotubes on the cycle performance of sulfur electrode for Li/S secondary battery
Lithium sulfur cells were prepared by composing with sulfur cathode, 0.5M LiCF3SO3 in tetra ethylene glycol dimethyl ether (TEGDME) solution and lithium anode. Multiwalled carbon nanotubes (MWNTs) were used to form the high electric network and prevent the dissolution of lithium polysulfides in sulfur cathode. The effects of additive contents were investigated by discharge test. The morphology of cathode with MWNTs (20wt.%) has rough and submicro porous. The initial discharge capacity of lithium sulfur cell using multiwalled carbon nanotubes (MWNTs) was 1,200mAh/g-sulfur, which was better than those of acetylene black (AB). The cycle performance of lithium sulfur cell was remarkably improved by the the addition of MWNTs.