Polymer(Korea), Vol.38, No.5, 602-612, September, 2014
폴리디메틸실록산 성분을 포함하는 폴리우레탄의 합성과 이들의 열적 및 형상기억 특성
Synthesis of Polyurethanes Containing Poly(dimethyl siloxane) and Their Thermal and Shape Memory Properties
E-mail:
초록
폴리(디메틸 실록산)(PDMS) 성분을 포함하는 폴리우레탄(PU-Si)을 합성하고 이들의 열적 특성과 형상기억 특성을 분석하였다. 이를 위하여 메틸렌디페닐 디이소시아네이트와 1,4-부탄디올을 하드세그먼트(HS) 성분으로 하고, 소프트세그먼트(SS) 성분으로 PDMS 디올과 폴리(테트라메틸렌 에테르 글리콜)(PTMEG) 혼합폴리올을 사용하여 HS 함량이 각각 23%와 32%이면서 PDMS 함량이 다른 PU-Si를 용액중합법으로 합성하였다. HS 함량이 23%인 PU-Si의 경우 PDMS 함량 증가에 따라 SS의 냉결정화온도(Tcc)와 용융결정화온도는 증가하였으나 용융온도(Tm)에는 변화가 없었다. HS 함량이 32%인 시료들의 경우 PTMEG의 Tm이 HS 함량 23%인 시료들보다 약간 높은 온도에서 나타났으며 Tcc는 관찰되지 않았다. PDMS 성분이 포함된 PU-Si 필름들은 PU에 비해 형태고정성은 약간 좋
지 않지만 형상기억 효과는 더 우수하였다.
Polyurethanes containing poly(dimethyl siloxane) (PDMS) unit, PU-Si, were synthesized and their thermal and shape memory properties were investigated. Various amounts of PDMS units were incorporated via a solution polymerization method using mixed diols of poly(tetramethylene ether glycol) (PTMEG) and PDMS-diol as the soft segment (SS) and methylene diphenyl diisocyanate and 1,4-butanediol as the hard segment (HS). Two series of PU-Si samples with an HS content of 23% or 32% were prepared and analyzed. For PU-Si with an HS content of 23%, both the cold crystallization temperature (Tcc) and melt crystallization temperature of the SS domain moved higher temperature with increasing PDMS content, while the melting temperature (Tm) of the SS domain remained unaffected. The increase in HS content from 23% to 32% resulted in the increased Tm and disappearance of Tcc. The shape recovery of PU-Si flim with an HS content of 32% increased while its shape retention decreased as PDMS content increased.
Keywords:shape memory polyurethane;poly(dimethyl siloxane);thermal property;shape retention;shape recovery.
- Small W, Singhal P, Wilson TS, Maitland DJ, J. Mater. Chem., 20, 3356 (2010)
- Jang MK, Hartwig A, Kim BK, J. Mater. Chem., 19, 1166 (2009)
- Cai Y, Jiang JS, Zheng B, Xie MR, J. Appl. Polym. Sci., 127(1), 49 (2013)
- Hojabri L, Kong XH, Narine SS, Biomacromolecules, 10(4), 884 (2009)
- Hamciuc C, Hamciuc E, Okrasa L, Macromol. Res., 19(3), 250 (2011)
- Ansari S, Varghese JM, Dayas KR, Polym. Adv. Technol., 20, 459 (2009)
- Rahmani S, Entezami AA, Macromol. Res., 19(3), 221 (2011)
- Choi T, Weksler J, Padsalgikar A, Runt J, Polymer, 50(10), 2320 (2009)
- Ciolino AE, Gomez LR, Vega DA, Villar MA, Valles EM, Polymer, 49(24), 5191 (2008)
- Liu JA, Pan ZQ, Gao Y, J. Appl. Polym. Sci., 105(5), 3037 (2007)
- Jiang HM, Zheng Z, Song WH, Wang XL, J. Appl. Polym. Sci., 108(6), 3644 (2008)
- Lin CH, Lin WC, Yang MC, Colloids Surf. B, 71, 36 (2009)
- Yang ZH, Hu JL, Liu YQ, Yeung LY, Mater. Chem. Phys., 98(2-3), 368 (2006)
- Korpela FJ, Pakkanen TT, Eur. Polym. J., 47, 1694 (2011)
- Mattia J, Painter P, Macromolecules, 40(5), 1546 (2007)
- Jia QM, Zheng M, Zhu YC, Li JB, Xu CZ, Eur. Polym. J., 43, 35 (2007)
- Shin NR, Kwon BC, Park KH, Lee HS, Text. Sci. Eng., 44, 1 (2007)
- Lu YS, Larock RC, Biomacromolecules, 9(11), 3332 (2008)
- Rao HX, Zhang ZY, Song C, Qiao T, React. Funct. Polym., 71(5), 537 (2011)
- Kang DW, Park SW, Polym.(Korea), 35(5), 488 (2011)
- Chung YC, Lim NK, Choi JW, Chun BC, J. Intell. Mater. Syst. Struct., 20, 1163 (2009)
- Askari F, Barikani M, Barmar M, J. Appl. Polym. Sci., 130(3), 1743 (2013)
- Fragiadakis D, Runt J, Macromolecules, 46(10), 4184 (2013)
- Ji FL, Hu JL, Yu WMW, Chiu SSY, J. Macromol. Sci. Phys., 50, 2290 (2011)
- Hong SJ, Yu WR, Youk JH, Macromol. Res., 16(7), 644 (2008)
- Chen SJ, Hu JL, Liu YQ, Liem HM, Zhu Y, Liu YJ, J. Polym. Sci. B: Polym. Phys., 45(4), 444 (2007)
- Wang L, Yang X, Chen H, Yang G, Gong T, Li W, Zhou S, Polym. Chem., 4, 4461 (2013)
- Sperling LH, Introduction to Physical Polymer Science, John Wiley&Sons, Singapore (1992)