화학공학소재연구정보센터
Polymer, Vol.55, No.17, 4521-4530, 2014
The effect of confined spherulite morphology of high-density polyethylene and polypropylene on their gas barrier properties in multilayered film systems
Confined crystallization of high-density polyethylene (HDPE) in multilayer films is studied in this paper. A new cyclic olefin copolymer (COC), HP030, is co-extruded with HDPE by a layer multiplying technique. The number of layers and layer compositions are changed to study the effect of layer thickness on the crystalline morphology of the HDPE layers under confinement. Atomic force microscopy (AFM) is used to investigate the crystalline morphology of the HDPE layers. MOCON (Minneapolis, MN, commercial instrument) units are employed to measure both oxygen permeability and water vapor transport rate (WVTR) of these co-extruded HDPE/HP030 multilayer films. We report that when the HDPE layer nominal thickness is about 290 nm in the HDPE/HP030 multilayer films, the HDPE layer effective gas barrier property is improved approximately 2 times for oxygen and 5 times for water vapor. This is the result of confined spherulite morphology of HDPE, which increases the tortuosity for gas to diffuse through the films. Similar phenomenon is found for polypropylene (PP), when PP is co-extruded against polycarbonate (PC). The same experiments as for HDPE are conducted to confirm that PP spherulites have been confined by PC in PP/PC multilayer films. We discover that the confined spherulites of PP improve its gas barrier properties as well. (C) 2014 Elsevier Ltd. All rights reserved.