Polymer Bulletin, Vol.71, No.8, 2113-2131, 2014
Inter-polymer complex microspheres of chitosan and cellulose acetate phthalate for oral delivery of 5-fluorouracil
Inter-polymer complexes (IPCs) of chitosan (CS) and cellulose acetate phthalate (CAP) have been prepared to develop spherical microspheres by a novel emulsion-solvent evaporation technique. The microspheres were used for the oral delivery of 5-fluorouracil (5-FU), an antimetabolite and antineoplastic agent, whose release time was extended up to 12 h. Formulations were prepared by varying the concentrations of CS, CAP and 5-FU. FTIR confirmed the formation of IPC, indicating no chemical interactions of 5-FU with the polymer matrix. Scanning electron microscopy suggested spherical shape of the microspheres with smooth surfaces. Average particle size measured by optical microscopy varied between 2.7 and 5.5 mu m. Differential scanning calorimetry showed amorphous dispersion of 5-FU particles into the IPC matrix. Encapsulation efficiency as estimated by UV was dependent on polymer composition with the highest value of 96 %. Water uptake by the IPC microspheres was higher at higher concentration of CS in the matrix. In vitro drug release performed in pH 1.2 and pH 7.4 buffer media showed a dependence on compositions of CS, CAP and drug loading. Molar mass between cross-links (M (c)) and cross-link density (d (x) ) values of the polymer matrix calculated from swelling data indicated the formation of a dense matrix between CS and CAP; the matrix was able to control the release of 5-FU. The in vitro release data have been fitted to empirical equations to understand the nature of drug release mechanism.
Keywords:Chitosan;Cellulose acetate phthalate;5-Fluorouracil;Controlled release;Oral delivery;Empirical equations