화학공학소재연구정보센터
Process Safety and Environmental Protection, Vol.91, No.6, 489-494, 2013
Study of Fe-Co mixed metal oxide nanoparticles in the catalytic low-temperature CO oxidation
Iron-cobalt mixed metal oxide nanoparticles (Co/Fe molar ratio: 1/5) have been prepared by a simple co-precipitation method and employed as catalyst in low-temperature CO oxidation. The prepared catalysts were characterized by thermal gravimetric and differential thermal gravimetric analyses (TGA/DTG), X-ray diffraction (XRD), temperature programmed reduction (TPR), N-2 adsorption (BET) and transmission electron microscopy (TEM) techniques. The results revealed that inexpensive iron-cobalt mixed metal oxide nanoparticles have a high potential as catalyst in low temperature CO oxidation. The results showed that increasing in calcination temperature increased the crystallite and particle size and decreased the specific surface area, which caused a decrease in catalytic activity of prepared catalysts. In addition, the pretreatment conditions affect the catalytic activity and catalyst pretreated under oxidative atmosphere showed the higher activity than those pretreated under reductive and inert atmospheres. (C) 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.