Renewable Energy, Vol.36, No.2, 743-753, 2011
Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives
Renewable energy sources (RES) are mainly used in the electrical sector. Electricity is not a storable commodity. Hence it is necessary to produce the requested quantity and distribute it through the system in such a way as to ensure that electricity supply and demand are always evenly balanced. This constraint is actually the main problem related to the penetration of new renewables (wind and photovoltaic power) in the context of complex energy systems. Moreover the design of optimal energy resource mixes in climate change mitigation actions is a challenge faced in many places. The paper analyzes the problem of new renewable energy sources penetration. The case of Italian scenario is considered as a meaningful reference due to the characteristic size and the complexity of the same. The various energy scenarios are evaluated with the aid of a multipurpose software taking into account the interconnections between the different energetic uses. In particular it is shown how the penetration of new renewable energy sources is limited at an upper level by technological considerations and it will be more sustainable if an integration of the various energy uses (thermal, mobility and electrical) will be considered. A series of optimized scenarios are developed. In each case the maximum RES penetration feasible with the constraints was defined. Then analysis is applied to an energy system model of Italy showing how an integrated development of CHP and electric mobility can aid a further integration of wind and photovoltaic energy power. Finally the primary energy consumption saving possible in case of consistent penetration of intermittent renewables and CHP was identified. (C) 2010 Elsevier Ltd. All rights reserved.
Keywords:Complex energy system;Renewable energy;Sustainable energy supply;Constrained optimization;Fluctuating wind power;Fossil fuel consumption reduction