화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.5, No.2, 93-99, June, 1999
Silica-Pillared H-magadiites: Interlamellar Bass-Catalyzed Hydrolysis of Tetraethylorthosilicate in Pure Water Suspension
E-mail:
The silica-pillared H+-magadiites were prepared by interlamellar base-catalyzed hydrolysis of tetraethylorthosilicate [TEOS, Si(OC2H5)4] intercalated into the interlayers of H+ -magadiite. The interlamellar hydrolysis of TEOS were conducted between 10 min to 40 min in 0.00%, 0.05%, 0.10% and 0.20% NH3-water solution, affording siloxane-pillared H+ -magadiites with gallery height of 24.8∼30.3Å. Calcination of samples at 538 ℃ in air resulted in silica-pillared H+ -magadiites with a large specific surface areas between 551 and 1020 m2/g, depending on the aging time and NH3 concentration. The reaction in pure water and 0.05% NH3 solution afforded optimum specific surface areas and mesopores with narrow pore size distribution. The reaction in 0.10% and 0.20% NH3 solution resulted in sharp decrease of specific surface areas and poorly-ordered basal spacings, implying the partial destruction in the layered structure of H+ -magadiite.
  1. Berk KH, Schweger W, Porsch M, Chem. Tech., 39, 508 (1987)
  2. Landis ME, Aufdembrink AB, Chu P, Johnson ID, Kirker GW, Rubin MK, J. Am. Chem. Soc., 133, 318 (1991)
  3. Daily JS, Pinnavaia T, Chem. Mater., 4, 855 (1992)
  4. Sprung R, Davis ME, Kauffman JS, Dybowski CI, Ind. Eng. Chem. Res., 29, 213 (1990)
  5. Yanagisawa T, Shimizu T, Kazayuki K, Kato C, Bull. Chem. Soc. Jpn., 63, 988 (1990)
  6. Yanagisawa T, Shimizu T, Kazayuki K, Kato C, Bull. Chem. Soc. Jpn., 61, 3743 (1989)
  7. Tindwa RM, Ellis DK, Peng GZ, Clearfield AJ, J. Chem. Soc.-Faraday Trans., 81, 545 (1985)
  8. Rituz-Hitzky E, Rojo JM, Nature, 287, 28 (1980)
  9. Jeong SY, Kwon OY, Suh JK, Jin HK, Lee JM, J. Colloid Interface Sci., 175(1), 253 (1995)
  10. Kwon OY, Jeong SY, Suh JK, Ryu BH, Lee JM, J. Colloid Interface Sci., 177(2), 677 (1996)
  11. Jeong SY, Suh JK, Jin H, Lee JM, Kwon OY, J. Colloid Interface Sci., 180(1), 269 (1996)
  12. Brinker CL, Scherer GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, (Academic Press, London), p. 97 (1990)
  13. Galarneau A, Barodawalla A, Pinnavaia TJ, Nature, 374(6522), 529 (1995)
  14. Fletcher RA, Bibby DM, Clays Clay Miner., 35, 318 (1987) 
  15. Beneke K, Lagaly G, Am. Miner., 63, 818 (1983)
  16. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
  17. Lagaly G, Beneke K, Weiss A, Am. Miner., 53, 2061 (1968)
  18. Grace JM, Rocke SC, Crowder CE, Hasha DL, Clays Clay Miner., 26, 409 (1988)
  19. McAtee JL, House R, Eugster HP, Am. Miner., 53, 2061 (1968)
  20. Lagaly G, Beneke K, Am. Miner., 60, 642 (1975)
  21. Aelion R, Loebel A, Eirich F, J. Am. Chem. Soc., 72, 5705 (1950)
  22. Kresge CT, Leonowicz ME, Roth WT, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
  23. Beck JS, Varturi JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL, J. Am. Chem. Soc., 114, 10834 (1992)
  24. Tanev PT, Chibwe M, Pinnavaia TJ, Nature, 368(6469), 321 (1994)
  25. Bagshaw SA, Prouzet E, Pinnavaia TJ, Science, 269(5228), 1242 (1995)
  26. Petrovic I, Novrotsky A, Chen CY, Davis ME, Stud. Surf. Sci. Catal., 84, 677 (1994)