화학공학소재연구정보센터
Reactive & Functional Polymers, Vol.73, No.2, 291-302, 2013
Comparison of film properties for crosslinked core-shell latexes
Thermosetting acrylic latexes were synthesized using butyl acrylate (BA), methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA) via seeded two-stage process. A 2-level factorial experimental design was employed to investigate the effect of hydroxyl (core phase), carboxylate (shell phase) groups, and type of surfactant (Triton X200, Tergitol XJ) on the mechanical properties of thermosetting latexes. Eight latexes with varying concentration of HEMA, MAA and two types of surfactants were synthesized and crosslinked with three crosslinkers. Latex functionality for crosslinking was located in the core only, the shell only, and both the core-shell with varying concentrations. Melamine-formaldehyde (hexamethoxymethyl melamine) resin was employed to crosslink hydroxyl functionalities in the core. Carboxylic acid groups in the shell were crosslinked with zinc ammonium carbonate. HDI isocyanurate (Desmodur N3300A) were used to crosslink with hydroxyl or carboxyl functional groups in core and shell. The mechanical properties of coatings were evaluated in terms of tensile properties, cross-hatch adhesion, pencil hardness, and impact resistance. Design of experiment (DOE) was utilized to investigate the effect of variables on mechanical properties of crosslinked thermoset films. (C) 2012 Elsevier Ltd. All rights reserved.