화학공학소재연구정보센터
Reactive & Functional Polymers, Vol.73, No.3, 564-572, 2013
Enhanced loading of doxorubicin into polymeric micelles by a combination of ionic bonding and hydrophobic effect, and the pH-sensitive and ligand-mediated delivery of loaded drug
Folate-conjugated micelles were fabricated from amphiphilic diblock copolymers with poly(ethylene glycol) as the hydrophilic block and a random copolymer of n-butyl methacrylate and methacrylic acid as the hydrophobic block. Doxorubicin (DOX), a model drug that contains an amine group and hydrophobic moiety, was loaded with a high loading capacity into micelles by a combination of ionic bonding and hydrophobic effect. The combined interactions imparted a pH-sensitive delivery property to the system. The release rate of loaded DOX was slow at pH 7.4 (i.e., mimicking the plasma environment) but increased significantly at acidic pH (i.e., mimicking endosome/lysosome conditions). Acid-triggered drug release resulted from the carboxylate protonation of poly(methacrylic acid), which dissociated the ionic bonding between the micelles and DOX. Cellular uptake by folate receptor-overexpressing HeLa cells of the DOX-loaded folate-conjugated micelles was higher than that of micelles without folate conjugation. Thus, the DOX-loaded folate-conjugated micelles displayed higher cytotoxicity to HeLa cells. (C) 2013 Elsevier Ltd. All rights reserved.