화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.6, No.1, 19-24, January, 2000
Swelling Behavior of Polyurethane Hydrogels Based on Poly(ethylene oxide) glycol (PEG) or Poly(ethylene oxide-co-propylene oxide) glycol (PEPG)
E-mail:
PEG-based and PEPG-based polyurethane (PU) hydorgels were prepared using various ratios of ethylene oxide (EO)/propylene oxide (PO) and their swelling behaviors inverstigated. The PEG-based PU hydrogels showed a continuous volume transition with temperature. In contrast, The swelling behaviors of the PEPG-based PU hydrogels with a higher PO content exhibited a more sensitive volume transition than those of the PEPG-based PU hydrogels with a lower PO content. In a pulsatile swelling behavior experiment, the swelling-deswelling rates of the PEG-based PU hydrogels were constant regardless of the PEG molecular weight. In contrast, swelling-deswelling rates of the PEPG-based hydergels with a higher PO content were faster than those of the PEG-based PU hydrogel. This suggests that PO increases the hydrophobicity of the gel. Flory''''s interaction parameter,χ, was employed to characterize the relative solvent-polymer interaction. There are two contributions to the interaction parameter,χ, the entropic (χS) and the enthalpic (χH) contribution. The result of this study showed that the major contribution to the polymer-water interaction parameter χS.
  1. Baker RV, Controlled Release of biologically Active Agents, Chapter 3, John Wiley and Sons, New York (1988)
  2. Graham NB, Polymeric Biomaterials, E. Piskin, A. Hoffman, and Martinus, Eds., p. 170, Nijhoff Publishers, New York (1986)
  3. Graham NB, Poly(Ethylene Glyol) Chemistry, Biotechnical and Biomedical Applications, J.M. Harris, Ed., p. 263, Plenum Press, New York (1962)
  4. Zulfqar M, Quddos A, Zulfiqar S, J. Appl. Polym. Sci., 49, 2055 (1993)
  5. Gnanou Y, Hild G, Rempp P, Macromolecules, 20, 1662 (1987)
  6. Nabeth B, Pascault JP, Dusek K, J. Polym. Sci. B-Polym. Phys., 34(6), 1031 (1996)
  7. Bromberg L, J. Appl. Polym. Sci., 59(3), 459 (1996)
  8. Blare EA, Hudson DE, U.S. Patent, 3,786,035 (1974)
  9. Mukae K, Bae YH, Okano T, Kim SW, Polym. J., 22, 250 (1990)
  10. Bae YH, Okano T, Kim SW, Makromol. Chem. Rapid Commun., 9, 185 (1988) 
  11. Graham NB, Zulfiqar M, Nwachuku NE, Rashid A, Polymer, 31, 909 (1990)
  12. Brawn W, Stilbs P, Polymer, 23, 1780 (1982)
  13. Liu KJ, Parsons IL, Macromolecules, 2, 529 (1972)
  14. Bailey FE, Koleske JV, Polyethylene Oxide, p. 29, Academic Press, New York (1976)
  15. Blandemer MJ, Fox MF, Powell E, Stafford JW, Makromol. Chem., 124, 222 (1969) 
  16. Eliot TS, Water-Soluble Synthetic Polymers, P. Moluneux, Ed., p. 45, CRC Press, Florida (1984)
  17. Graham NB, McNeil ME, Biomaterials, 5, 27 (1984)
  18. Molyneux D, Water: A Comprehensive Treatise, F. Frank, Ed., vol. 4, p. 569, Plenum Press, New York (1975)
  19. Flory PJ, Principles of Polymer Chemistry, Chapter 13, Cornell University, Ithaca, New York (1953)
  20. Dusek K, Rubber Chem. Technol., 55, 1 (1982)
  21. Bailey FE, Callard RW, J. Appl. Polym. Sci., 1, 56 (1959)
  22. Bailey FE, Callard RW, J. Appl. Polym. Sci., 1, 373 (1959)
  23. Patterson D, Macromolecules, 2, 672 (1969)
  24. Patterson D, Robard A, Macromolecules, 11, 690 (1978)
  25. Patterson D, Rubber Chem. Technol., 1, 40 (1967)
  26. Bae YH, Okano T, Kim SW, J. Polym. Sci. B-Polym. Phys., 28, 923 (1990)