화학공학소재연구정보센터
Solar Energy, Vol.85, No.5, 955-966, 2011
Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation
Recent interest in small-scale solar thermal combined heat and power (CHP) power systems has coincided with demand growth for distributed electricity supplies in areas poorly served by centralized power stations. One potential technical approach to meeting this demand is the parabolic trough solar thermal collector coupled with an organic Rankine cycle (ORC) heat engine. The paper describes the design of a solar organic Rankine cycle being installed in Lesotho for rural electrification purpose. The system consists of parabolic though collectors, a storages tank, and a small-scale ORC engine using scroll expanders. A model of each component is developed taking into account the main physical and mechanical phenomena occurring in the cycle and based on experimental data for the main key components. The model allows sizing the different components of the cycle and evaluates the performance of the system. Different working fluids are compared, and two different expansion machine configurations are simulated (single and double stage). (C) 2011 Elsevier Ltd. All rights reserved.