화학공학소재연구정보센터
Solar Energy, Vol.103, 78-88, 2014
Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems
In this study, the environmental loads of 100 kWp cadmium telluride photovoltaic (CdTe PV) power generation systems in Malaysia are analyzed using life cycle assessment. The target renewable energy system is made up of CdTe PV panel, a power conditioning system and a balance of system. Life-cycle environmental issues were analyzed using major indicators like global warming potential, fossil fuel consumption, energy payback time, and CO2 payback time. Then, the results were compared with those of alternative PV systems such as single- and multi-crystalline silicon photovoltaics. The CdTe PV systems presently have a GWP of 15.1 g CO2 equivalent/kW h in Malaysia. The CdTe PV panel is the greatest contributor to global warming potential in the system, accounting for 47.8%. Electricity used in the semiconductor deposition process is the major contributor of GWP in CdTe PV panel. Total fossil fuel consumption is 0.221 MJ/kW h. The CdTe PV panel accounts for 49.3% of the total fossil fuel consumption. Energy payback time and CO2 payback time are 0.94 years and 0.76 years, respectively, and those are relatively short periods compared with other PV power plants. The energy return on investment of the CdTe PV system was found to be superior to other Si-based PV systems. (C) 2014 Published by Elsevier Ltd.