Applied Chemistry for Engineering, Vol.25, No.5, 463-467, October, 2014
팽창흑연/에리스리톨 복합체의 열적거동에 관한 연구
A Study on Thermal Behaviors of Expanded Graphite/Erythritol Composites
E-mail:,
초록
본 연구에서는 팽창흑연의 함량 변화를 달리하여 제조한 팽창흑연/에리스리톨 복합체의 열적거동에 관하여 고찰하였다. 팽창흑연이 도입된 팽창흑연/에리스리톨 복합체의 표면 및 구조특성은 scanning electron microscope (SEM), transmission electron microscope (TEM), 그리고 X-ray diffraction (XRD)를 이용하여 관찰하였으며, 열적특성은 differential scanning calorimetry (DSC)와 thermal conductivity (TC)를 이용하여 분석하였다. 실험 결과 팽창흑연의 함량이 증가함에 따라 팽창흑연/에리스리톨 복합체의 열전도도가 증가하였으며, 반면에 잠열은 팽창흑연의 존재 하에 약간 감소하였다. 결론적으로 팽창흑연은 상변이 물질의 높은 열 전달성능 및 열 저장능력을 향상시키는데 적합한 소재라 판단된다.
In this paper, the thermal behaviors of expanded graphite(EG)/erythritol composites with different contents of EG were studied. The surface and structure properties of the composites were determined by using scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD), respectively. The thermal properties were investigated
by differential scanning calorimetry (DSC) and thermal conductivity (TC). As experimental results, the thermal conductivity of the composites increased with increasing the EG content. However, the latent heat was somewhat decreased in the presence of EG. We could concluded that EG was highly promising materials for improving the heat transfer enhancement and energy storage capacity of phase change materials (PCMs).
- Nomura T, Okinaka N, Akiyama T, Mater. Chem. Phys., 115(2-3), 846 (2009)
- Frusteri F, Leonardi V, Maggio G, Appl. Therm. Eng., 26, 1883 (2006)
- Karaipekli A, Sari A, Kaygusuz K, Renew. Energy, 32(13), 2201 (2007)
- Pincemin S, Olives R, Py X, Christ M, Sol. Energy Mater. Sol. Cells, 92(6), 603 (2008)
- Chen YJ, Nguyen DD, Shen MY, Yip MC, Tai NH, Compos. A, 44, 40 (2013)
- Haillot D, Bauer T, Kroner U, Tamme R, Thermochim. Acta, 513(1-2), 49 (2011)
- Kang F, Zhang YP, Wang HN, Nishi Y, Inagaki M, Carbon, 40, 1575 (2002)
- Chen GH, Wu CL, Weng WG, Wu DJ, Yan WL, Polymer, 44(6), 1781 (2003)
- Gilart PM, Martinez AY, Barriuso MG, Martinez CM, Sol. Energy Mater. Sol. Cells, 107, 205 (2012)
- Park SJ, Kim KS, Hong SK, Polym.(Korea), 29(1), 8 (2005)
- Yim SW, Lee JH, Lee YG, Lee SG, Kim SR, J. Adhes. Interface, 10, 30 (2009)
- Hong J, Shim SE, Appl. Chem. Eng., 21(2), 115 (2010)
- Cheng WL, Liu N, Wu WF, Appl. Therm. Eng., 36, 345 (2012)
- Chen Z, Shan F, Cao L, Fang GY, Sol. Energy Mater. Sol. Cells, 102, 131 (2012)
- Mehrali M, Latibari ST, Mehrali M, Metselaar HSC, Silakhori M, Energy Conv. Manag., 67, 275 (2013)
- Teng TP, Cheng CM, Cheng CP, Appl. Therm. Eng., 50, 637 (2013)
- Bhatt VD, Gohil K, Mishra A, Int. J. Chemtech. Res., 2, 1771 (2010)
- Xiao X, Zhang P, Li M, Energy Conv. Manag., 73, 86 (2013)
- Frusteri F, Leonardi V, Vasta S, Restuccia G, Appl. Therm. Eng., 25, 1623 (2005)
- Lee SY, Shin HK, Park MR, Rlee KY, Park SJ, Carbon, 68, 67 (2014)
- Oya T, Nomura T, Tsubota M, Okinaka N, Akiyama T, Appl. Therm. Eng., 61, 825 (2013)
- Xia L, Zhang P, Wang RZ, Carbon, 48, 2538 (2010)
- Park SJ, Kim KS, Lee JR, J. Korean Ind. Eng. Chem., 15(5), 493 (2004)
- Choi JR, Lee YS, Park SJ, Polym.(Korea), 37(4), 449 (2013)
- Park SJ, Kim KS, Korean Chem. Eng. Res., 42(3), 362 (2004)
- Kim S, Drza LT, Sol. Energy Mater. Sol. Cells, 93(1), 136 (2009)
- Choi DH, Lee JH, Hong HR, Kang YT, Int. J. Refrigeration, 42, 112 (2014)
- Park SJ, Kim KS, Hong SK, HWAHAK KONGHAK, 41(6), 802 (2003)
- Wang CY, Feng LL, Li W, Zheng J, Tian WH, Li XG, Sol. Energy Mater. Sol. Cells, 105, 21 (2012)
- Sari A, Karaipekli A, Appl. Therm. Eng., 37, 208 (2012)
- Oya T, Nomura T, Okinaka N, Akiyama T, Appl. Therm. Eng., 40, 373 (2012)
- Yu JS, Horibe A, Haruki N, Kim MJ, Trans. Korean Soc. Mech. Eng., 11, 807 (2012)