Applied Chemistry for Engineering, Vol.25, No.5, 497-502, October, 2014
상압 플라즈마-촉매 하이브리드 반응기를 통한 CO2와 CH4의 전환처리
Conversion of CO2 and CH4 through Hybrid Reactor Composed of Plasma and Catalyst at Atmospheric Pressure
E-mail:
초록
상압 플라즈마 반응기 내에 Ni-Al2O3와 Ni-MgAl2O4 촉매를 충진한 하이브리드 반응기를 이용하여 메탄과 이산화탄소의 전환반응을 진행하였다. 인가전력, 반응가스 유량, 혼합비율 및 반응기 온도 등 다양한 공정변수와 촉매의 충진유무에 따른 메탄과 이산화탄소의 전환반응 특성이 분석되었다. 촉매의 반응 기여도 분석에서 공정온도를 400 ℃까지 올린 경우에도 플라즈마 방전이 없이는 메탄과 이산화탄소의 촉매를 통한 자발적 전환반응이 일어나지 않았다. 이는 촉매를 충진하지 않은 플라즈마 방전만의 전환공정과의 비교를 통하여 확인할 수 있었다. 플라즈마 반응기에 촉매를 적용하는 경우에는 공정의 적절성과 전환처리에 적합한 촉매의 선택이 필수적이다.
The conversion reaction of methane and carbon dioxide at an atmospheric pressure plasma reactor filled with Ni-Al2O3 and Ni-MgAl2O4 catalyst was performed. Effects of various process parameters such as the applied electric power, reaction gas flow rate, reactor temperature, mixing ratio of reactants and the presence of the catalyst on the reaction between methane
and carbon dioxide were analyzed. From the analysis of the contribution of the catalyst in the reaction step, even if the temperature raised to 400 ℃, there was no spontaneous catalytic conversion of methane and carbon dioxide without plasma discharges. When the catalysts for the conversion of methane and carbon dioxide would be adopted to the plasma reactor, the careful selection of suitable catalysts and process parameters should be essential.
Keywords:syngas;plasma reforming reaction;greenhouse gas;atmospheric pressure plasma;catalytic hybrid reactor
- Hokazono H, Fujimoto H, J. Appl. Phys., 62, 1585 (1987)
- Li MW, Xu GH, Tian YL, Chen L, Fu HF, J. Phys. Chem. A, 108(10), 1687 (2004)
- Zhang YP, Li Y, Wang Y, Liu CJ, Eliasson B, Fuel Process. Technol., 83(1-3), 101 (2003)
- Yao SL, Okumoto M, Nakayama A, Suzuki E, Energy Fuels, 15(5), 1295 (2001)
- Roland U, Holzer F, Kopinke ED, Appl. Catal. B: Environ., 58(3-4), 217 (2005)
- Kim TK, Lee WG, Appl. Chem. Eng., 22(6), 653 (2011)
- Jiang T, Li Y, Liu CJ, Xu GH, Eliasson B, Xue BZ, Catal. Today, 72(3-4), 229 (2002)
- Tao XM, Qi FW, Yin YP, Dai XY, Int. J. Hydrog. Energy, 33(4), 1262 (2008)
- Tao XM, Bai MG, Wu QY, Huang ZJ, Yin YX, Dai XY, Int. J. Hydrog. Energy, 34(23), 9373 (2009)
- Le H, Lobban LL, Mallinson RG, Catal. Today, 89(1-2), 15 (2004)
- Li DH, Li X, Bai MG, Tao XM, Shang SY, Dai XY, Yin YX, Int. J. Hydrog. Energy, 34(1), 308 (2009)
- Indarto A, Choi JW, Lee H, Song HK, Energy, 31(14), 2986 (2006)
- Li Y, Xu GH, Liu CJ, Eliasson B, Xue BZ, Energy Fuels, 15(2), 299 (2001)
- Li Y, Xu GH, Liu CJ, Eliasson B, Xue BZ, Energy Fuels, 15(2), 299 (2001)
- Song HK, Lee H, Choi JW, Na BK, Plasma Chem. Plasma Process., 24(1), 57 (2004)
- Kim TK, Lee WG, J. Ind. Eng. Chem., 18(5), 1710 (2012)
- Martinez R, Romero E, Guimon C, Bilbao R, Appl. Catal. A: Gen., 274(1-2), 139 (2004)
- Pompeo F, Nichio NN, Ferretti OA, Resasco D, Int. J. Hydrog. Energy, 30(13-14), 1399 (2005)
- Jung SH, Park SM, Park SH, Kim SD, Ind. Eng. Chem. Res., 43(18), 5483 (2004)
- Kraus M, Eliasson B, Kogelschatz U, Wokaun A, Phys. Chem. Chem. Phys., 3, 294 (2001)
- Chen HL, Lee HM, Chen SH, Chang MB, Ind. Eng. Chem. Res., 47(7), 2122 (2008)
- Futamura S, Kabashima H, Einaga H, IEEE Trans. Ind. Appl., 40, 1476 (2004)
- Zhang K, Eliasson B, Kogelschatz U, Ind. Eng. Chem. Res., 41(6), 1462 (2002)
- Marques R, Da Costa S, Da Costa P, Appl. Catal. B: Environ., 82(1-2), 50 (2008)