화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.5, 3108-3114, September, 2014
Kinetic modeling formulation of the methanol to olefin process: Parameter estimation
E-mail:
Detailed kinetic models at the elementary step level were developed for the methanol to olefins (MTO) process over SAPO-34 catalyst. Starting from believable mechanisms, forming primary products was modeled rigorously by the Hougen.Watson formalism. Discrimination of kinetic equations and calculation of the parameters of best fit were performed by solving the mass conservation equations of the main products of the kinetic scheme. For rate constants, preexponential factors and apparent activation energies were then calculated according to the Arrhenius equation. For thermodynamic constants, the difference between apparent activation energies of forward and reverse reaction was considered. The kinetic model fits well the experimental data, which is obtained in a fixed bed reactor. The results showed that rising space-time is favorable for olefin yields while an optimum temperature might produce the maximum olefin.
  1. Hu H, Cao F, Ying W, Sun Q, Fang D, Chem. Eng. J., 160, 770 (2005)
  2. Marchi A, Froment G, Appl. Catal., 71, 139 (1991)
  3. Park TY, Froment GF, Ind. Eng. Chem. Res., 43(3), 682 (2004)
  4. Dubois DR, Obrzut DL, Liu J, Thundimadathil J, Adekkanattu PM, Guin JA, Punnoose A, Seehra MS, Fuel Process. Technol., 83(1-3), 203 (2003)
  5. Lee YJ, Baek SC, Jun KW, Appl. Catal. A: Gen., 329, 130 (2007)
  6. Lok B, Messina C, Patton R, Gajek R, Cannan T, Flanigen E, US Patent 4,440,871(1984) Lok B, Messina C, Patton R, Gajek R, Cannan T, Flanigen E, Journal of American Chemical Society 106 (1984) 6092.
  7. Wu XC, Anthony RG, Appl. Catal. A: Gen., 218(1-2), 241 (2001)
  8. Sedighi M, Keyvanloo K, Towfighi J, Ind. Eng. Chem. Res., 50(3), 1536 (2011)
  9. Keyvanloo K, Sedighi M, Towfighi J, Chem. Eng. J., 209, 255 (2012)
  10. Park TY, Froment GF, Ind. Eng. Chem. Res., 40(20), 4172 (2001)
  11. Park TY, Froment GF, Ind. Eng. Chem. Res., 40(20), 4187 (2001)
  12. Gayubo AG, Aguayo AT, del Campo AES, Tarrio AM, Bilbao J, Ind. Eng. Chem. Res., 39(2), 292 (2000)
  13. Wang LY, Yang BL, Wang ZW, Chem. Eng. J., 109(1-3), 1 (2005)
  14. Froment GF, Bischoff KB, Wilde JD, Chemical Reactor Analysis and Design, John Wiley & Sons Inc., 2011p. 87.
  15. Kaarsholm M, Rafii B, Joensen F, Cenni R, Chaouki J, Patience GS, Ind. Eng. Chem. Res., 49, 29 (2009)
  16. Gayubo AG, Aguayo AT, Alonso A, Bilbao J, Ind. Eng. Chem. Res., 46(7), 1981 (2007)
  17. Aguayo AT, Mier D, Gayubo AG, Gamero M, Bilbao J, Ind. Eng. Chem. Res., 49(24), 12371 (2010)
  18. Najafabadi AT, Fatemi S, Sohrabi M, Salmasi M, J. Ind. Eng. Chem., 18(1), 29 (2012)
  19. Froment G, Dehertog W, Marchi A, Catalysis, 9 (1992)
  20. Hutchings GJ, Gottschalk F, Hall MM, Hunter R, J. Chem. Soc.-Faraday Trans., 1(83), 571 (1987)
  21. Hutchings GJ, Hunter R, Catal. Today, 6, 279 (1990)
  22. Al Wahabi SM, Conversion of Methanol to Light Olefins on SAPO-34 Kinetic Modeling and Reactor Design, Texas A&M University, 2003.
  23. Alwahabi SM, Froment GF, Ind. Eng. Chem. Res., 43(17), 5098 (2004)
  24. Wu XC, Abraha MG, Anthony RG, Appl. Catal. A: Gen., 260(1), 63 (2004)