화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.5, 3584-3589, September, 2014
Effect of the addition of carbon black and carbon nanotube to FeS2 cathode on the electrochemical performance of thermal battery
E-mail:
Effect of the addition of conductive carbonaceous materials to the FeS2 (pyrite) cathode on electrochemical performance of thermal battery is investigated by adding carbon blacks (CBs) or multi-walled carbon nanotubes (MWCNTs) which has conductive network structures with various amounts from 0.1 to 1 wt.%, compared to the amount of pure FeS2. Among the samples prepared with various amounts of CB or MWCNT addition, the 1 wt.% CB-added sample exhibits the highest electrochemical properties. These results suggest that the improvement in the electrochemical performance of thermal batteries can be achieved by the addition of the conductive carbonaceous materials to pyrite electrode.
  1. Guidotti RA, Masset P, J. Power Sources, 161(2), 1443 (2006)
  2. Guidotti RA, Masset PJ, J. Power Sources, 183(1), 388 (2008)
  3. Masset PJ, Guidotti RA, J. Power Sources, 177(2), 595 (2008)
  4. Wang SS, Seefurth RN, J. Electrochem. Soc., 134, 530 (1987)
  5. Tomczuk Z, Preto SK, Roche MF, J. Electrochem. Soc., 128, 760 (1981)
  6. Guidotti RA, Reinhardt FW, Dai J, Roth J, Reisner DE, J. New Mat. Electrochem. Syst., 5, 273 (2002)
  7. Reisner DE, Xiao TD, Dai J, Guidotti RA, Reinhardt FW, J. New Mater. Electrochem. Syst., 2, 276 (1999)
  8. Huang XB, Li X, Wang HY, Pan ZL, Qu MZ, Yu ZL, Electrochim. Acta, 55(24), 7362 (2010)
  9. Sivakkumar SR, Howlett PC, Winther-Jensen B, Forsyth M, MacFarlane DR, Electrochim. Acta, 54(27), 6844 (2009)
  10. Wei W, Wang J, Zhou L, Yang J, Schumann B, Luli Y, Electrochem. Commun., 13, 399 (2011)
  11. Luli Y, Yang J, Jiang M, Mater. Lett., 62, 2092 (2008)
  12. Yang JJ, Choi JH, Kim HJ, Morita M, Park SG, J. Ind. Eng. Chem., 19(5), 1648 (2013)
  13. Liu XM, Huang ZD, Oh SW, Zhang B, Ma PC, Yuen MMF, Kim JK, Compos. Sci. Technol., 72, 121 (2012)
  14. Ying LS, Salleh MABM, Yusoff HBM, Rashid SBA, Razak JBA, J. Ind. Eng. Chem., 17, 367 (2013)
  15. Fujiwara S, Inaba M, Tasaka A, J. Power Sources, 196(8), 4012 (2011)
  16. Singh P, Guidotti RA, Reisner D, J. Power Sources, 138(1-2), 323 (2004)
  17. Choi JW, Cheruvally G, Ahn HJ, Kim KW, Ahn JH, J. Power Sources, 163(1), 158 (2006)
  18. Choi YS, Yu HR, Cheong HW, Cho SB, Lee YS, Accepted in Applied Chem. Engr. Nov. (2013).
  19. Swift GA, Proceedinsgs of the 43rd Power Sources Conference 7.1, Sheraton Philadelphia City Center Hotel, Philadelphia, PA 7. 7-7.10, (2008), p. 113.
  20. Swift GA, Proceedinsgs of the. 43rd Power Sources Conference P-13, Sheraton Philadelphia City Center Hotel, Philadelphia, PA 7. 7-7.10, (2008), p. 249.
  21. Swift GA, Proceedinsgs of the 43rd Power Sources Conference P-14, Sheraton Philadelphia City Center Hotel, Philadelphia, PA 7. 7-7.10, (2008), p. 253.
  22. Liu XM, Huang ZD, Oh SW, Zhang B, Ma PC, Yuen MMF, Kim JK, Compos. Sci. Technol., 72, 121 (2012)
  23. Donnet JB, Carbon black: Science and Technology, 2nd ed., Taylor & Francis, 1993.
  24. Chen KS, in: Proceedings of the 42nd Power Sources Conference 12.4, Wyndham Philadelphia, Philadelphia, PA 6. 12-6.15, (2006), p. 289.
  25. Shuster N, Papadakis N, Barlow G, Bayles G, in: Proceedings of the 37th Power Sources Conference 12.3, Hilton Cherry Hill, New Jersey 6. 17-6.20, (1996), p. 325.
  26. Freitas GCS, Peixoto FC, Vianna AS, J. Power Sources, 179(1), 424 (2008)
  27. Schoeffert S, J. Power Sources, 142(1-2), 361 (2005)
  28. Barsoukov E, Kim JH, Yoon CO, Lee H, J. Power Sources, 83(1-2), 61 (1999)
  29. Galus Z, Fundamentals of Electrochemical Analysis, Wiley, New York, 1976.