Journal of Industrial and Engineering Chemistry, Vol.20, No.5, 3672-3677, September, 2014
Preparation of catalytic particle electrodes from steel slag and its performance in a three-dimensional electrochemical oxidation system
E-mail:,
Catalytic particle electrodes (CPEs) were developed from steel slag waste, and were used to degrade Rhodamine B (RhB). To improve degradation efficiency, Mn-loaded CPEs with good reproductive performance were constructed through ultrasound impregnation-calcination strategy. The resulting samples were characterized by XRF, SEM, EDS, XPS and XRD. Degradation efficiency of the systems with Mn-loaded CPEs were 93.22% without air supply in 80 min. And degradation efficiency for Mn-loaded CPEs reached 100% with air supply in 50 min. Furthermore, the enhanced mechanism was proposed. The high degradation efficiency could be ascribed to the increase of hydroxyl radicals originated from electro-Fenton.
Keywords:Steel slag;Three-dimensional electrochemical;oxidation system;CPEs;electro-Fenton oxidation
- Chen WR, Sharpless CM, Linden KG, Suffet IH, Environ. Sci. Technol., 40, 2734 (2006)
- Yong L, Armstrong KC, Dansby-Sparks RN, Carrington NA, Chambers JQ, Xue ZL, Anal. Chem., 78, 7582 (2006)
- Baird NC, J. Chem. Educ., 74, 817 (1997)
- Wang YR, Chu W, J. Hazard. Mater., 186(2-3), 1455 (2011)
- Feng YJ, Cui YH, Sun LX, Liu JF, Cai WM, J. Harbin Inst. Technol., 36, 450 (2004)
- Wei JZ, Feng YJ, Sun XJ, Liu JF, Zhu LM, J. Hazard. Mater., 189(1-2), 84 (2011)
- McClung SM, Lemley AT, Text. Chem. Color., 26, 17 (1994)
- Kong WP, Wang B, Ma HZ, Gu L, J. Hazard. Mater., 137(3), 1532 (2006)
- Polcaro AM, Palmas S, Renoldi F, Mascia M, Electrochim. Acta, 46(2-3), 389 (2000)
- Xiong Y, He C, Karlsson HT, Zhu X, Chemosphere, 50, 131 (2003)
- Wu XB, Yang XQ, Wu DC, Fu RW, Chem. Eng. J., 138(1-3), 47 (2008)
- Rao NN, Rohit M, Nitin G, Chemosphere, 76, 1206 (2009)
- Healy AJ, Ash PA, Lenz O, Vincent KA, Phys. Chem. Chem. Phys., 15, 7055 (2013)
- Stankovic VD, Stankovic S, J. Appl. Electrochem., 21, 124 (1991)
- Sharifina H, Kikr DW, J. Electrochem. Soc., 133, 921 (1986)
- Dieckmann GR, Langer SH, Electrochim. Acta, 44(2-3), 437 (1998)
- Altun A, Yilmaz I, Cem. Concr. Res., 32, 1247 (2002)
- Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C, J. Hazard. Mater., 152(2), 805 (2008)
- He F, Fang Y, Xie J, Mater. Des., 42, 198 (2012)
- Shi C, Qian J, Resour. Conserv. Recycl., 29, 195 (2000)
- Shen WG, Zhou MK, Ma W, Hu JQ, Cai Z, J. Hazard. Mater., 164(1), 99 (2009)
- Claveau-Mallet D, Wallace S, Comeau Y, Water Res., 47, 1512 (2013)
- Barca C, Troesch S, Meyer D, Drissen P, Andre Y, Chazarenc F, Environ. Sci. Technol., 47, 549 (2013)
- Wu ZJ, Yue HF, Li LS, Jiang BF, Wu XR, Wang P, J. Power Sources, 195(9), 2888 (2010)
- Sweatman TW, Seshadri R, Israel M, Cancer Chemother. Pharmacol., 27, 205 (1990)
- Hood RD, Jones CL, Ranganathan S, Teratology, 40, 143 (1989)
- Qu XH, Louis JK, Edward TB, Photochem. Photobiol., 71, 307 (2000)
- Cheng XW, Liu HL, Chen QH, Li JJ, Wang P, Electrochim. Acta, 103, 134 (2013)
- Qi GS, Yang RT, J. Phys. Chem. B, 108(40), 15738 (2004)
- Chen ZH, Yang Q, Li H, Li XH, Wang LF, Tsang SC, J. Catal., 276(1), 56 (2010)
- Huang Y, Su C, Yang Y, Lu M, Environ. Prog., 32, 187 (2013)
- Qiang Z, Chang J, Huang C, Water Res., 37, 1308 (2003)
- An TC, Li GY, Zhu XH, Fu JM, Sheng GY, Zhu Z, Appl. Catal. A: Gen., 279(1-2), 247 (2005)
- Fockedey E, Lierde AV, Water Res., 36, 4169 (2002)
- Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H, ChemSusChem, 5, 46 (2012)
- Soon AN, Hameed BH, Desalination, 269(1-3), 1 (2011)
- Ferroudj N, Nzimoto J, Davidson A, Appl. Catal. B: Environ., 136-137, 9 (2013)
- Zhou T, Wu X, Zhang Y, Li J, Lim TT, Appl. Catal. B: Environ., 136-137, 294 (2013)
- Hartmann M, Kullmann S, Keller H, J. Mater. Chem., 20, 9002 (2010)
- Liu W, Ai ZH, Zhang LZ, J. Hazard. Mater., 243, 257 (2012)