화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.5, 3672-3677, September, 2014
Preparation of catalytic particle electrodes from steel slag and its performance in a three-dimensional electrochemical oxidation system
E-mail:,
Catalytic particle electrodes (CPEs) were developed from steel slag waste, and were used to degrade Rhodamine B (RhB). To improve degradation efficiency, Mn-loaded CPEs with good reproductive performance were constructed through ultrasound impregnation-calcination strategy. The resulting samples were characterized by XRF, SEM, EDS, XPS and XRD. Degradation efficiency of the systems with Mn-loaded CPEs were 93.22% without air supply in 80 min. And degradation efficiency for Mn-loaded CPEs reached 100% with air supply in 50 min. Furthermore, the enhanced mechanism was proposed. The high degradation efficiency could be ascribed to the increase of hydroxyl radicals originated from electro-Fenton.
  1. Chen WR, Sharpless CM, Linden KG, Suffet IH, Environ. Sci. Technol., 40, 2734 (2006)
  2. Yong L, Armstrong KC, Dansby-Sparks RN, Carrington NA, Chambers JQ, Xue ZL, Anal. Chem., 78, 7582 (2006)
  3. Baird NC, J. Chem. Educ., 74, 817 (1997)
  4. Wang YR, Chu W, J. Hazard. Mater., 186(2-3), 1455 (2011)
  5. Feng YJ, Cui YH, Sun LX, Liu JF, Cai WM, J. Harbin Inst. Technol., 36, 450 (2004)
  6. Wei JZ, Feng YJ, Sun XJ, Liu JF, Zhu LM, J. Hazard. Mater., 189(1-2), 84 (2011)
  7. McClung SM, Lemley AT, Text. Chem. Color., 26, 17 (1994)
  8. Kong WP, Wang B, Ma HZ, Gu L, J. Hazard. Mater., 137(3), 1532 (2006)
  9. Polcaro AM, Palmas S, Renoldi F, Mascia M, Electrochim. Acta, 46(2-3), 389 (2000)
  10. Xiong Y, He C, Karlsson HT, Zhu X, Chemosphere, 50, 131 (2003)
  11. Wu XB, Yang XQ, Wu DC, Fu RW, Chem. Eng. J., 138(1-3), 47 (2008)
  12. Rao NN, Rohit M, Nitin G, Chemosphere, 76, 1206 (2009)
  13. Healy AJ, Ash PA, Lenz O, Vincent KA, Phys. Chem. Chem. Phys., 15, 7055 (2013)
  14. Stankovic VD, Stankovic S, J. Appl. Electrochem., 21, 124 (1991)
  15. Sharifina H, Kikr DW, J. Electrochem. Soc., 133, 921 (1986)
  16. Dieckmann GR, Langer SH, Electrochim. Acta, 44(2-3), 437 (1998)
  17. Altun A, Yilmaz I, Cem. Concr. Res., 32, 1247 (2002)
  18. Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C, J. Hazard. Mater., 152(2), 805 (2008)
  19. He F, Fang Y, Xie J, Mater. Des., 42, 198 (2012)
  20. Shi C, Qian J, Resour. Conserv. Recycl., 29, 195 (2000)
  21. Shen WG, Zhou MK, Ma W, Hu JQ, Cai Z, J. Hazard. Mater., 164(1), 99 (2009)
  22. Claveau-Mallet D, Wallace S, Comeau Y, Water Res., 47, 1512 (2013)
  23. Barca C, Troesch S, Meyer D, Drissen P, Andre Y, Chazarenc F, Environ. Sci. Technol., 47, 549 (2013)
  24. Wu ZJ, Yue HF, Li LS, Jiang BF, Wu XR, Wang P, J. Power Sources, 195(9), 2888 (2010)
  25. Sweatman TW, Seshadri R, Israel M, Cancer Chemother. Pharmacol., 27, 205 (1990)
  26. Hood RD, Jones CL, Ranganathan S, Teratology, 40, 143 (1989)
  27. Qu XH, Louis JK, Edward TB, Photochem. Photobiol., 71, 307 (2000)
  28. Cheng XW, Liu HL, Chen QH, Li JJ, Wang P, Electrochim. Acta, 103, 134 (2013)
  29. Qi GS, Yang RT, J. Phys. Chem. B, 108(40), 15738 (2004)
  30. Chen ZH, Yang Q, Li H, Li XH, Wang LF, Tsang SC, J. Catal., 276(1), 56 (2010)
  31. Huang Y, Su C, Yang Y, Lu M, Environ. Prog., 32, 187 (2013)
  32. Qiang Z, Chang J, Huang C, Water Res., 37, 1308 (2003)
  33. An TC, Li GY, Zhu XH, Fu JM, Sheng GY, Zhu Z, Appl. Catal. A: Gen., 279(1-2), 247 (2005)
  34. Fockedey E, Lierde AV, Water Res., 36, 4169 (2002)
  35. Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H, ChemSusChem, 5, 46 (2012)
  36. Soon AN, Hameed BH, Desalination, 269(1-3), 1 (2011)
  37. Ferroudj N, Nzimoto J, Davidson A, Appl. Catal. B: Environ., 136-137, 9 (2013)
  38. Zhou T, Wu X, Zhang Y, Li J, Lim TT, Appl. Catal. B: Environ., 136-137, 294 (2013)
  39. Hartmann M, Kullmann S, Keller H, J. Mater. Chem., 20, 9002 (2010)
  40. Liu W, Ai ZH, Zhang LZ, J. Hazard. Mater., 243, 257 (2012)