화학공학소재연구정보센터
Thin Solid Films, Vol.542, 263-269, 2013
White organic light-emitting diodes with an ultra-thin premixed emitting layer
We described an approach to achieve fine color control of fluorescent White Organic Light-Emitting Diodes (OLED), based on an Ultra-thin Premixed emitting Layer (UPL). The UPL consists of a mixture of two dyes (red-emitting 4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene or fvin and green-emitting 4-di(4'-tert-butylbiphenyl-4-yl)aminobenzaldehyde or fcho) premixed in a single evaporation cell: since these two molecules have comparable structures and similar melting temperatures, a blend can be evaporated, giving rise to thin films of identical and reproducible composition compared to those of the pre-mixture. The principle of fine color tuning is demonstrated by evaporating a 1-nm-thick layer of this blend within the hole-transport layer (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (alpha-NPB)) of a standard fluorescent OLED structure. Upon playing on the position of the UPL inside the hole-transport layer, as well as on the premix composition, two independent parameters are available to finely control the emitted color. Combined with blue emission from the heterojunction, white light with Commission Internationale de l'Eclairage 1931 color coordinates (0.34, 034) was obtained, with excellent color stability with the injected current. The spectrum reveals that the fcho material does not emit light due to efficient energy transfer to the red-emitting fvin compound but plays the role of a host matrix for fvin, allowing for a very precise adjustment of the red dopant amount in the device. (C) 2013 Elsevier B.V. All rights reserved.