Thin Solid Films, Vol.544, 224-229, 2013
Effect of microstructure of TiN film on properties as bipolar plate coatings in polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted magnetron sputtering
As potential application in bipolar plate of polymer electrolyte membrane fuel cell, the microstructure, corrosion resistance and the electrical conductivity of titanium nitride (TiN) and Si doped titanium nitride (Ti0.9Si0.1N) films deposited by magnetron sputtering with different bias voltages are investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), electrochemical test and four-point probe method, respectively. XRD, SEM and AFM results reveal that the texture and topography of TiN film depend on the bias voltage and incorporation of Si. When the bias voltage is -20 V and -30 V, the TiN and Ti0.9Si0.1N films exhibit a dense (111) plane preferred growth, denser structure and smoother surface topography. The potentiodynamic test results indicate that the TiN and Ti0.9Si0.1N films have higher chemical inertness and better corrosion resistance. The films can satisfy the requirement of current density for bipolar plate materials. Incorporation of Si element into TiN film makes the passive current density more stable. Four-point probe measurement results show that the resistivity of both TiN and Ti0.9Si0.1N films reaches minimum when the deposition bias voltage is -20 V. Crown Copyright (C) 2013 Published by Elsevier B. V. All rights reserved.