Thin Solid Films, Vol.562, 361-366, 2014
Surface thermal stability of iron pyrite nanocrystals: Role of capping ligands
Iron pyrite (FeS2) is a promising photovoltaic absorber material with a high natural abundance and low cost, but surface defects and low photoresponse inhibit sunlight energy conversion. The surface stability of pyrite FeS2 nanocrystals synthesized in oleylamine (OLA) with trioctylphosphine oxide (TOPO) as an additional capping ligand was investigated using Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. Tunable laser exposure during Raman spectroscopy measurement was developed for convenient and systematic evaluation of the stability of FeS2 nanocrystals. The surface stability of 100-200 nm diameter cubic nanocrystals with long-chain (OLA, TOPO) or small-molecule (pyridine) capping ligands was evaluated after high-intensity laser exposure as well as after thermal annealing in air and N-2. While increasing surface coverage with OLA and TOPO capping ligands provided additional protection against oxidation, FeS2 nanocrystals capped with pyridine showed good stability at temperatures up to 200 degrees C in air and 400 degrees C in N-2. These results provide greater understanding of the processing of nanocrystal-based iron pyrite thin films for photovoltaic applications. (C) 2014 Elsevier B.V. All rights reserved.