화학공학소재연구정보센터
Thin Solid Films, Vol.562, 383-388, 2014
An effective route for transparent and superhydrophobic coating with high mechanical stability
Superhydrophobic surfaces possess incredibly useful properties in terms of repelling water and dirt. Yet, the transparency and mechanical durability are still the challenges to expand superhydrophobic coating to wider applications. In this paper, we introduce an effective and simple route to fabricate transparent & superhydrophobic coating with an excellent mechanical stability. The optical and wearing characterization shows that, by the surface coating of fluoridated vertical ZnO nanorods, high relative-transparency over 99% (compared with bare glass) and excellent endurance over sand abrasion are achieved, while maintaining excellent superhydrophobocity with over 160 degrees in contact angle and less than 5 degrees in sliding angle. The hydrophobicity coating by fluoride treated vertical ZnO nanorods can be also adaptive to conformal coating on micropatterned surfaces, i.e., microlens arrays, showing a promising superhydrophobicity and transparency while keeping the exactly lens profile. The robust superhydrophobic treatment while maintaining the transparence can find applications in various fields. (C) 2014 Elsevier B.V. All rights reserved.