화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.9, 990-995, September, 2014
Microdroplet formation of polyvinylpyrrolidone/carbon nanotube by ultrasonic atomization
E-mail:
Ultrasonic atomization is conducted to produce composite particles of polyvinylpyrrolidone (PVP) and multi-walled carbon nanotube (MWCNT) from an aqueous suspension. The rheological properties of the suspensions are varied in a systematic manner by changing the molecular weight of the polymers, the polarity, and the concentration of MWCNT in the given composite system. A particular interest of this study is to investigate how the ultrasonic atomization of PVP/MWCNT suspensions is affected by their shear and extensional properties. As a characteristic of the fluid under extensional flow, the fluid relaxation time is measured from capillary breakup extensional rheometry. It is found that the average size of the composite droplets is increased as the relaxation time in the capillaries of PVP/MWCNT increases, while the number of available particles is mainly limited by the shear viscosity of the suspension. With the available materials and analyses adopted in this study, the observed trends are explained in terms of two dimensionless groups: the Deborah and Ohnesorge numbers, which encompass the material parameters (viz, relaxation time, shear viscosity, density, and surface tension) associated with the atomization process of viscoelastic fluids.
  1. Kim Y, Kim H, Polym. Eng. Sci., 51(12), 2446 (2011)
  2. Asmatulu R, Fakhari A, Wamocha HL, Chu HY, Chen YY, Eltabey MM, Hamdeh HH, Ho JC, J. Nanotechnol., 2009, 238536 (2009)
  3. Zhang K, Liu YD, Choi HJ, Chem. Commun., 48, 136 (2012)
  4. Fan ZH, Advani SG, J. Rheol., 51(4), 585 (2007)
  5. Ma AWK, Mackley MR, Chinesta F, Int. J. Mater. Form., 1, 75 (2008)
  6. Ma AWK, Chinesta F, Tuladhar T, Mackley MR, Rheol. Acta, 47(4), 447 (2008)
  7. Tiwari MK, Bazilevsky AV, Yarin AL, Megaridis CM, Rheol. Acta, 48(6), 597 (2009)
  8. Hobbie EK, Rheol. Acta, 49(4), 323 (2010)
  9. O'Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE, Chem. Phys. Lett., 342(3-4), 265 (2001)
  10. Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME, Haddon RC, Chem. Phys. Lett., 345(1-2), 25 (2001)
  11. Anna SL, McKinley GH, J. Rheol., 45(1), 115 (2001)
  12. Rodd LE, Scott TP, Cooper-Whitev, Mckinley GH, Appl. Rheol., 15, 12 (2005)
  13. Clasen C, Korea-Aust. Rheol. J., 22(4), 331 (2010)
  14. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C, Carbon, 46, 833 (2008)
  15. Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ, Macromolecules, 37(26), 9899 (2004)
  16. Christanti Y, Walker LM, J. Rheol., 46(3), 733 (2002)
  17. Avvaru B, Patil MN, Gogate PR, Pandit AB, Ultrasonics, 44, 146 (2006)
  18. McKinley G, Rheol. Bull., 74, 6 (2005)
  19. Bhat PP, Appathurai S, Harris MT, Pasquali M, McKinley GH, Basaran OA, Nat. Phys., 6, 625 (2010)
  20. Bhattacharjee PK, McDonnell AG, Prabhakar R, Yeo LY, Friend J, New J. Phys., 13, 023005 (2011)
  21. Hiemenz PC, Rajagopalan R, Principles of Colloid and Surface Chemistry, 3rd ed., Taylor & Francis, New York (1997)
  22. Xue HS, Fan JR, Hu YC, Hong RH, Cen KF, J. Appl. Phys., 100, 104909 (2006)