화학공학소재연구정보센터
Clean Technology, Vol.20, No.3, 269-276, September, 2014
수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원
Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS
E-mail:
초록
본 연구는 수은연속측정시스템의 가장 중요한 구성 요소의 하나인 산화수은을 원소수은으로 환원시킬 수 있는 건식 환원촉매시스템 개발을 목적으로 수행되었다. 산화-환원 표준전위를 기준으로 산화수은의 원소수은으로의 환원반응을 자발적으로 일으킬 수 있는 촉매 대상물질로 Fe, Cu, Ni 및 Co 4종류의 전이금속이 선택되었다. 이들 전이금속 촉매들은 산소가 없는 반응가스 조성에서 산화수은의 원소수은으로의 환원반응에 대해 높은 활성을 보였다. 그러나 산소가 존재하는 경우 환원 활성이 크게 감소하는데 이는 산소에 의해 해당 전이금속이 산화수은 환원 활성이 낮은 전이금속산화물로 변환되기 때문이다. 반응가스에 산소가 존재하여도 수소를 공급하면 산화수은 환원 활성이 크게 증가되는데 이는 산화수은의 환원반응이 진행되는 고온에서 산소와 수소 사이의 연소반응에 의해 산소가 소모되기 때문으로 확인되었다. Fe를 환원촉매로 하고 배기가스에 수소를 공급하는 산화수은 환원촉매시스템은 SnCl2 수용액을 사용하는 습식화학 환원기술에 필적할 수준의 활성을 나타내기 때문에 상업적으로 적용 가능한 산화수은 환원시스템으로 기대된다.
This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury (Hg2+) to elemental mercury (Hg0) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of Hg2+ into Hg0. These transition metal catalysts revealed high activity for reduction of Hg2+ into Hg0 in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced Hg2+ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between H2 and O2 causing the consumption of O2 at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for Hg2+ reduction to Hg0, which was compatible to that of wet-chemistry technology using SnCl2 solution, the catalytic reduction system of Fe catalyst with the supply of H2 could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.
  1. Lindberg SE, Stratton WJ, Environ. Sci. Technol., 32, 49 (1998)
  2. Travis CC, Blaylock BP, Toxicol. Environ. Chem., 49, 203 (1995)
  3. Schroeder WH, Munthe J, Atmos. Environ., 32, 809 (1998)
  4. U. S. Government Printing Office, “Mercury Study Report to Congress,” Washington, DC (1997)
  5. U. S. Government Printing Office, “A Study of Hazardous Air Pollutant from Electric Utility Steam Generating Units: Final Report to Congress,” Washington, DC (1998)
  6. Kim MH, Ham SW, Lee JB, Appl. Catal. B: Environ., 99, 272 (2010)
  7. Hong HJ, Ham SW, Kim MH, Lee SM, Lee JB, Korean J. Chem. Eng., 27(4), 1117 (2010)
  8. Lee SS, Kim KY, Oh KJ, Jeon JM, Kang DC, Clean Technol., 19(4), 453 (2013)
  9. Hong HJ, Ham SW, Clean Technol., 17(4), 370 (2011)
  10. Zhenghe YL, Kuznicki SM, Energy Fuels, 24, 10 (2010)
  11. Byun Y, Shin DN, Ham SW, Lee K, Anal. Methods, 4, 3841 (2012)
  12. Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KC, Laudal DL, Benson SA, Fuel Process. Technol., 82(2-3), 89 (2003)
  13. Geng W, Nakajima T, Takanashi H, Ohki A, J. Hazard. Mater., 154(1-3), 325 (2008)
  14. Hatch WR, Ott WL, Anal. Chem., 40, 2085 (1968)
  15. Liang L, Horvat M, Bloom NS, Talanta, 41, 371 (1994)
  16. Zamzow DS, Bajic SJ, Eckels DE, Baldwin DP, Winterrrowd C, Keeney R, Rev. Sci. Instrum., 74, 3774 (2003)
  17. Laudal DL, Thompson JS, Pavlish JH, Brickett LA, Chu P, Fuel Process. Technol., 85(6-7), 501 (2004)
  18. Brown TL, LeMay HE, Bursten BE, Chemistry The Central Science, 10th ed., Prentice Hall, NJ, p. 1128. (2006)