Clean Technology, Vol.20, No.3, 290-297, September, 2014
입상 활성탄에 의한 Coomassi Brilliant Blue G의 흡착에 대한 평형, 동력학 및 열역학에 관한 연구
Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Coomassi Brilliant Blue G Using Activated Carbon
E-mail:
초록
본 연구에서는 활성탄을 사용하여 coomassi brilliant blue G (CBBG)염료를 흡착하는데 필요한 흡착평형과 흡착동역학 및 열역학 파라미터들에 대하여 조사하였다. 등온흡착평형관계로 부터 Langmuir 식과 Freundlich 식의 분리계수를 평가하여 활성탄에 의한 CBBG의 흡착조작이 유효한 처리방법이 될 수 있음을 알았고, Dubinin-Radushkevich 식으로부터 흡착공정이 물리흡착공정임을 알았다. 흡착공정에 대한 동력학적 해석을 통해 흡착반응은 유사이차반응속도식이 유사일차반응속도식에 비해 일치도가 높은 것으로 나타났으며, 입자내확산이 흡착공정의 지배단계임을 알았다. 유사이차반응속도식을 적용한 열역학적 해석을 통해 평가된 엔탈피 변화값(406.12 kJ/mol)으로부터 흡착공정이 흡열반응으로 진행됨을 알았다. 또한 엔트로피 변화값(1.66 kJ/mol K)은 흡착공정의 무질서도가 증가한다는 것을 나타내었다. 온도가 올라갈수록 자유에너지 값이 감소하는 경향을 보인 것은 활성탄에 대한 CBBG의 흡착반응은 온도가 올라갈수록 자발성이 높아지는 것으로 판단되었다.
Batch adsorption studies were carried out for equilibrium, kinetics and thermodynamic parameters for adsorption of coomassi brilliant blue G (CBBG) using activated carbon with varying the operating variables like initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich and Dubinin-Radushkevich isotherms.
From estimated separation factor of Langmuir and Freundlich, this process could be employed as effective treatment for removal of CBBG. Also from Dubinin-Radushkevich isotherm model, adsorption energy (E) indicated adsorption process is physical adsorption. From kinetic experiments, the adsorption reaction was found to confirm to the pseudo second order model with good correlation. Intraparticle diffusion was rate controlling step. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (406.12 kJ/mol) indicated endothermic nature of the adsorption process. The change of entropy (1.66 kJ/mol K) showed increasing disorder in process. The change of free energy found that the spontaneity of process increased with increasing adsorption temperature.
- Sun Q, Yang L, Water Res., 37, 535 (2003)
- Kadirvelu K, Kavipriya M, Karthika C, Radhika M, Vennilamani N, Pattabhi S, Bioresour. Technol., 87(1), 129 (2003)
- Ho YS, McKay G, Process Biochem., 38(7), 1047 (2003)
- Gupta VK, Ali I, Environ. Sci. Technol., 42, 766 (2008)
- Lu X, Li D, Huang Y, Zhang Y, Surf. Coat. Technol., 201, 6843 (2007)
- Ketelsen H, Windel SM, Geoderma, 90, 131 (1999)
- Gupta VK, Mittal A, Krishnan L, Mittal J, J. Colloid Interface Sci., 293(1), 16 (2006)
- Wu ZJ, Joo H, Lee K, Chem. Eng. J., 112(1-3), 227 (2005)
- Bangash FK, Alam S, J. Chem. Soc. Pak., 29(5), 401 (2007)
- Xing G, Liu S, Xu Q, Liu Q, Carbohyd. Polym., 87, 1447 (2012)
- Lu FC, Lavallee A, Canad. Pharm. J., 97, 30 (1964)
- Lee JJ, Lee CY, Clean Technol., 16(3), 206 (2010)
- Weber TW, Chakrabarti RK, Ind. Chem. Eng. Fund., 5, 212 (1996)
- Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337 (2008)
- Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
- Lee JJ, Clean Technol., 20(1), 35 (2014)
- Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253(11), 4843 (2007)
- Nethaji S, Sivasamy A, Thennarasu G, Saravanan S, J. Hazard. Mater., 181(1-3), 271 (2010)
- Onal Y, Akmil-Basar C, Eren D, Sarici-Ozdemir C, Depci T, J. Hazard. Mater., 128(2-3), 150 (2006)
- Jaycock MJ, Parfitt GD, “Chemistry of Interfaces,” Ellis Horwood Ltd., Chichester (1981)
- Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590 (2007)
- Mittal A, J. Hazard. Mater., 128(2-3), 233 (2006)
- Janaki V, Vijayaraghavan K, Ramasamy AK, Lee KJ, Oh BT, Kamala-Kannan S, J. Hazard. Mater., 241, 110 (2012)
- Lee JJ, Clean Technol., 17(2), 97 (2011)