화학공학소재연구정보센터
Clean Technology, Vol.20, No.3, 306-313, September, 2014
Preparationand Characterization of Rutile-anatase Hybrid TiO2 Thin Film by Hydrothermal Synthesis
E-mail:,
Nanoporous TiO2 films are commonly used as working electrodes in dye-sensitized solar cells (DSSCs). So far, there have been attempts to synthesize films with various TiO2 nanostructures to increase the power-conversion efficiency. In this work, vertically aligned rutile TiO2 nanorods were grown on fluorinated tin oxide (FTO) glass by hydrothermal synthesis, followed by deposition of an anatase TiO2 film. This new method of anatase TiO2 growth avoided the use of a seed layer that is usually required in hydrothermal synthesis of TiO2 electrodes. The dense anatase TiO2 layer was designed to behave as the electron-generating layer, while the less dense rutile nanorods acted as electron-transfer pathwaysto the FTO glass. In order to facilitate the electron transfer, the rutile phase nanorods were treated with a TiCl4 solution so that the nanorods were coated with the anatase TiO2 film after heat treatment. Compared to the electrode consisting of only rutile TiO2, the power-conversion efficiency of the rutile-anatase hybrid TiO2 electrode was found to be much higher. The total thickness of the rutile-anatase hybrid TiO2 structures were around 4.5-5.0 μm, and the highest power efficiency of the cell assembled with the structured TiO2 electrode was around 3.94%.
  1. Granovskii M, Dincer I, Rosen MA, Int. J. Hydrog. Energy, 32(8), 927 (2007)
  2. Lee H, Park NK, Lee TJ, Han GB, Kang M, Clean Technol., 19(1), 22 (2013)
  3. Regan BO, Gratzel M, Nature, 353, 737 (1991)
  4. Gratzel M, Inorg. Chem., 44(20), 6841 (2005)
  5. Gratzel M, Acc. Chem. Res., 42, 1788 (2009)
  6. Frank SN, Bard AJ, J. Am. Chem. Soc., 97, 7427 (1975)
  7. Santz PA, Kamat PV, Phys. Chem. Chem. Phys., 4, 198 (2002)
  8. Giraudeau A, Fan FF, Bard AJ, J. Am. Chem. Soc., 102, 5142 (1980)
  9. Mo SD, Ching WY, Phys. Rev., 51, 13023 (1995)
  10. Reintjes J, Schultz MB, J. Appl. Phys., 39, 5254 (1968)
  11. Chen DH, Huang FZ, Cheng YB, Caruso RA, Adv. Mater., 21(21), 2206 (2009)
  12. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, J. Am. Ceram. Soc., 80, 3157 (1997)
  13. Chou TP, Zhang QF, Russo B, Fryxell GE, Cao GZ, J. Phys. Chem. C, 111, 6296 (2007)
  14. Cahen D, Hodes G, Gratzel M, Guillemoles JF, Riess I, J. Phys. Chem. B, 104(9), 2053 (2000)
  15. Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N, Tanemura S, Appl. Surf. Sci., 212, 255 (2003)
  16. Zhang QH, Gao L, Guo JK, Appl. Catal. B: Environ., 26(3), 207 (2000)
  17. Ovenstone J, Yanagisawa K, Chem. Mater., 11, 2770 (1999)
  18. Benko G, Kallioinen J, Myllyperkio P, Trif F, Korppi-Tommola JEI, Yartsev AP, Sundstrom V, J. Phys. Chem. B, 108(9), 2862 (2004)
  19. Yu H, Zhang S, Zhao H, Xue B, Liu P, Will G, J. Phys. Chem. C, 113, 16277 (2009)
  20. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR, Chem. Comm., 1464 (2002)
  21. Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB, J. Am. Chem. Soc., 130(40), 13364 (2008)
  22. Liu Z, Subramania VR, Misra M, J. Phys. Chem. C, 113, 14028 (2009)
  23. Feng X, Shankar K, Paulose M, Grimes CA, Angew. Chem., 121, 8239 (2009)
  24. Albu SP, Kim D, Schmuki P, Angew Chem., 120, 1942 (2008)
  25. Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Gratzel M, ACS Nano., 2, 1113 (2008)
  26. Tan B, Wu YY, J. Phys. Chem. B, 110(32), 15932 (2006)
  27. Lei BX, Liao JY, Zhang R, Wang J, Su CY, Kuang DB, J. Phys. Chem. C, 114, 15228 (2010)
  28. Pommer EE, Liu B, Aydil ES, Phys. Chem. Chem. Phys., 11, 9648 (2009)
  29. Feng X, Zhu K, Frank AJ, Grimes CA, Mallouk TE, Angew. Chem., 124, 2781 (2012)
  30. Huang Q, Zhou G, Fang L, Hua L, Wang ZS, Energy Environ. Sci., 4, 2145 (2011)
  31. Lv M, Zheng D, Ye M, Sun L, Xiao J, Guo W, Lin C, Nanoscale, 4, 5872 (2012)
  32. Howard CJ, Sabine ZM, Dickson F, Acta Cryst. B, 47, 462 (1991)
  33. Sedach PA, Gordon TJ, Sayed SY, Furstenhaupt T, Sui R, Baumgartner T, Berlinguette CP, J. Mater. Chem., 20, 5063 (2010)
  34. Wang X, Liu Y, Zhou X, Li B, Wang H, Zhao W, Huang H, Liang C, Yu X, Liua Z, Wang HS, J. Mater. Chem., 22, 17531 (2012)
  35. Liu B, Aydil ES, J. Am. Chem. Soc., 131(11), 3985 (2009)
  36. Wang H, Bai Y, Wu Q, Zhou W, Zhang H, Li J, Guo L, Phys. Chem. Chem. Phys., 13, 7008 (2011)
  37. Feng X, Shankar K, Paulose M, Grimes CA, Angew. Chem. Int. Ed. Engl., 48, 8095 (2009)
  38. Wu WQ, Lei BX, Rao HS, Xu YF, Wang YF, Su CY, Kuang DB, Sci Rep., 3, 1352 (2013)
  39. Liao JY, Lei BX, Wang YF, Liu JM, Su CY, Kuang DB, Chem. Eur. J., 17, 1352 (2011)
  40. Charoensirithavorn P, Ogomi Y, Sagawa T, Hayase S, Yoshikawa S, J. Electrochem. Soc., 157, 354 (2010)
  41. Teatum ET, Gschneidner KA, Waber JT, Nat. Technol. Inf. Ser., 206 (1968)
  42. Ungar T, Scr. Mater., 51, 777 (2004)
  43. Zhang F, Chan SW, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP, Appl. Phys. Lett., 80, 127 (2002)
  44. Li W, Ni C, Lin H, Huang CP, Shah SI, J. Appl. Phys., 96, 6663 (2004)
  45. Cho TY, Han CW, Jun YS, Yoon SG, Sci. Rep., 3, 1496 (2013)
  46. Kim SY, van Duin ACT, J. Phys. Chem. A, 117(27), 5655 (2013)
  47. Guo WX, Xu C, Wang X, Wang SH, Pan CF, Lin CJ, Wang ZL, J. Am. Chem. Soc., 134(9), 4437 (2012)