Polymer(Korea), Vol.38, No.6, 760-766, November, 2014
비드형 고흡수성 수지의 제조 및 특성연구
Preparation and Characterization of Bead Type Superabsorbent Resin
E-mail:
초록
종래의 역상 현탁중합 방법을 개선하여 서방성 재료로 적합한 비드형 고흡수성 수지를 제조하고 그것
의 물리적 특성을 관찰하였다. 단량체로 아크릴산과 아크릴 아마이드를, 가교제로는 N,N-메틸렌 비스아크릴아마이드를 사용하였다. 단량체 수용액의 점도는 하이드록시에틸셀룰로오스(HEC)로 조절하였고 분산안정제로 에틸셀룰로오스와 폴리부타디엔계를 조합하여 사용하였고, 분산상으로는 혼합용매를 사용하여 단량체 수용액과 비중을 유사하게 조절하여 사용하였다. 제조된 비드의 주사전자현미경(SEM) 분석결과, 입자의 표면에 수십 nm 직경의 기공들이 존재함을 확인하였다. 비드 입자의 크기는 단량체 수용액의 점성을 조절함에 따라 500~3000 μm 범위의 크기 분포를 보였다. 비드의 흡수량 및 흡수속도는 입자크기에 반비례하였으며 1 g 수지가 5시간 동안에 흡수하는 최대 수분량은 평균 170~200 g이었다. 한편, 이러한 흡수량은 수용액의 pH 변화에 의존하였으며 pH 5~11 범위에서 최대의 흡수량을 보였으며, NaCl과 MgCl2 염이나 에탄올과 프로필렌글리콜의 농도 증가에 따라서는 흡수량이 급격하게 저하되었다. 흡수 후 방출 거동을 관찰한 결과 상온에서 700시간으로 서방성 재료로 사용가능성을 확인하였다.
Bead type super-absorbent resins to be used for release-control were prepared by modification of the inverse suspension polymerization, and their physical properties were characterized. Acrylic acid and acrylamide were used as monomers, and N,N-methylenebisacrylamide was used as crosslinker, controlling the viscosity of monomer solution by adding hydroxyethylcellulose (HEC). SEM studies of the synthesized beads verified that the bead surfaces had many pores with their diameters of several tens nm. The bead sizes were in the range of 500~3000 μm, depending on the viscosity of the monomer solution. Both absorbent amount and absorbent rate of the beads were inversely proportional to the bead size, and the maximum water absorbent amount of 1 g beads was determined to be ca. 170~200 g for 5 hrs. The absorbent rate was also dependent on pH change of the aqueous solution, exhibiting the maximum rate in pH ranging from 5 to 11. The absorbent rate decreased as the concentration
of salt (NaCl and MgCl2) or ethanol and ethylene glycol increased. Release time of the water absorbed into the bead resins was 700 hrs, confirming the usefulness of the resin for the good release-control materials.
- Buchhholz FL, Graham AT, Modern Superabsorbent Polymer Technology, Elsevier, Amsterdam (1998)
- Chatterjee PK, Absorbency, Elsevier, New York (1985)
- Taylor NW, Bagley EB, J. Appl. Polym. Sci., 21, 1607 (1977)
- Lepoutre P, Hui SH, Robertson AA, J. Macromol. Sci. Chem., 10, 681 (1976)
- Po RJ, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 34, 607 (1994)
- Hoffman AS, Polymeric Materials Encyclopedia, CRC Press, Florida (1996)
- Krul LP, Nareiko EI, Matusevich YI, Yakimtsova LB, Matusevich V, Seeber W, Polym. Bull., 45(2), 159 (2000)
- Pourjavadi A, Harzandi AM, Hossenzadeh H, Eur. Polym. J., 40, 1363 (2004)
- Zhao Y, Su HJ, Fang L, Tan TW, Polymer, 46(14), 5368 (2005)
- Yin L, Fei L, Cui F, Tang C, Yin C, Biomaterials, 28, 1258 (2007)
- Cottenden AM, J. Biomed. Eng., 10, 506 (1988)
- Tanaka T, Sun ST, Hirokawa Y, Katayama S, Kucera J, Hirose Y, Amiya T, Nature, 325, 796 (1987)
- Brooks BW, Richmond HN, Chem. Eng. Sci., 49, 1053 (1987)
- Pourjavadi A, Hossinzadeh H, Bull. Korean Chem. Soc., 31, 3163 (2010)
- Chen J, Park K, J. Control. Rel., 65, 73 (2000)
- Chen J, Park K, Carbohydr. Polym., 41, 259 (2000)
- Gotoh T, Nakatani Y, Sakohara S, J. Appl. Polym. Sci., 69(5), 895 (1998)
- Badiger MV, Mcnail ME, Graham NB, Biomaterials, 14, 1059 (1993)
- Smith SJ, Lind EJ, U.S. Patent 5,399,591 (1995)
- Omidian H, Hashemi SA, Sammes PG, Meldrum I, Polymer, 39(26), 6697 (1998)
- Flory PJ, Principles of Polymer Chemistry, Cornell University Press, Ithaka, New York (1953)
- Pourjavadi A, Hosseinzadeh H, Mazidi R, J. Appl. Polym. Sci., 98(1), 255 (2005)
- Pass G, Philips GO, Wedlock DJ, Macromolecules, 10, 197 (1997)
- Grulke EA, in Polymer Handbook, Wiley, New York, U.S.A., Vol. 2, p 675 (1999)
- Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A, Allahdadi I, J. Appl. Polym. Sci., 102(6), 5667 (2006)