Applied Chemistry for Engineering, Vol.25, No.6, 559-563, December, 2014
PVDF-HFP/이온성 액체 겔 분리막 제조 및 기체 투과도 측정
Preparation and Gas Permeability Measurements of PVDF-HFP/Ionic Liquid Gel Membranes
E-mail:
초록
상온에서 액체 상태인 이미다졸리움 계열의 이온성 액체에 이산화탄소가 잘 흡수된다는 사실은 잘 알려져 있다. 이러한 이산화탄소의 고용해도 때문에 이온성 액체를 포함하는 분리막은 이산화탄소/질소, 이산화탄소/메탄과 같은 기체 혼합물을 잘 분리할 수 있다. 본 연구에서는 다양한 종류의 이온성 액체를 포함하는 poly(vinylidene fluoride)-hexafluoropropyl copolymer (PVDF-HFP) 겔 분리막을 제조하고 여러 기체의 투과도를 측정하였다. 음이온이 tetrafluoroborate (BF4-)인 경우, 양이온의 탄소수가 증가할수록 이산화탄소의 투과도와 선택도가 모두 감소하였다. 양이온이 1-ethyl-3-methylimidazolium[
emim]인 경우, 음이온이 tetrafluoroborate (BF4-)일 때에 비해서 bis(trifluoromethane)sulfoneimide (Tf2N-)일 때 이산화탄소의 투과도가 2배 정도 증가하였으나, 이산화탄소/질소 및 이산화탄소/메탄의 선택도는 감소하였다. 하지만 이산화탄소/수소 선택도는 두 경우에 거의 비슷하였다.
It is well known that CO2 can be dissolved easily in imidazolium-based room temperature ionic liquids (RTILs). Because of the high CO2 solubility in RTILs, membranes containing RTILs can separate easily gas mixtures such as CO2/N2 and CO2/CH4. In this study, we prepared poly(vinylidene fluoride)-hexafluoropropyl copolymer (PVDF-HFP) gel membranes with several RTILs and measured permeabilities of several gases. When the anion of ionic liquids was tetrafluoroborate(BF4-), both CO2 permeability and selectivities decreased as the carbon number of the cation increased. When the cation of ionic liquids was 1-ethyl-3-methylimidazolium[emim], CO2 permeability of gel membranes containing bis(trifluoromethane) sulfoneimide(Tf2N-) anion was double compared to those containing tetrafluoroborate(BF4-) anion. However, CO2/N2 and CO2/CH4 selectivities of the Tf2N- case were decreased, whereas the H2 selectivity was almost the same for two cases.
- Henis JMS, Tripodi MK, Science, 220, 11 (1983)
- Abelson PH, Science, 244, 1421 (1989)
- Liu C, Martin CR, Nature, 352, 50 (1991)
- Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
- Anderson MR, Mattes BR, Reiss H, Kaner RB, Science, 252, 1412 (1991)
- Hong SU, Jin JH, Won J, Kang YS, Adv. Mater., 12(13), 968 (2000)
- Seo Y, Hong SU, Lee BS, Angew. Chem. Int. Ed., 42, 1145 (2003)
- Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Wagner EV, Freeman BD, Cookson DJ, Science, 318, 254 (2007)
- Ahn SH, Seo JA, Kim JH, Ko Y, Hong SU, J. Membr. Sci., 345(1-2), 128 (2009)
- Choi JI, Jung CH, Han SH, Park HB, Lee YM, J. Membr. Sci., 349(1-2), 358 (2010)
- Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB, Science, 339(6117), 303 (2013)
- Kim HW, Yoon HW, Yoon SM, Yoo BM, Ahn BK, Cho YH, Shin HJ, Yang H, Paik U, Kwon S, Choi JY, Park HB, Science, 342(6154), 91 (2013)
- Chi WS, Hong SU, Jung B, Kang SW, Kang YS, Kim JH, J. Membr. Sci., 443, 54 (2013)
- Freeman BD, Macromolecules, 32(2), 375 (1999)
- Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ, J. Am. Chem. Soc., 126(16), 5300 (2004)
- Hou Y, Baltus RE, Ind. Eng. Chem. Res., 46(24), 8166 (2007)
- Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD, Ind. Eng. Chem. Res., 48(6), 2739 (2009)
- Fortunato R, Afonso CAM, Reis MAM, Crespo JG, J. Membr. Sci., 242(1-2), 197 (2004)
- Conich J, Myers C, Pennfine H, Luebke D, J. Membr. Sci., 298(1-2), 41 (2007)
- Hong SU, Park D, Ko Y, Baek I, Chem. Commun., 7227 (2009)