화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.6, 619-623, December, 2014
과일껍질을 이용한 바이오에탄올 생산 공정에서 산 가수분해 및 효소당화의 영향
The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels
E-mail:
초록
산 가수분해공정과 효소당화공정을 이용하여 사과, 귤, 수박껍질로부터 셀룰로오스 에탄올을 생산하고, 그 최적조건을 결정함으로써 과일껍질을 원료로 한 바이오에너지 생산가능성을 평가하고자 하였다. 산 가수분해공정을 이용하여 과일껍질로부터 셀룰로오스 에탄올을 생산하기 위한 최적조건은 사과껍질의 경우 황산농도 20 wt%에서 90 min, 귤껍질과 수박껍질의 경우에는 각각 산 가수분해시간 60 min에서 황산의 농도가 15, 10 wt%인 것으로 나타났다. 효소당화공정을 이용하여 과일껍질로부터 셀룰로오스 에탄올을 생산할 경우 효소로는 Viscozyme이 가장 우수한 전환특성을 나타내었으며, 최적 효소당화시간은 사과껍질(180 min), 귤껍질(60 min), 수박껍질(120 min)인 것을 알 수 있었다.
The acid hydrolysis and enzymatic saccharification were carried out for the production of cellulosic ethanol. The possibility of bio-energy production from tangerine peel and apple and watermelon rind was evaluated by determining the optimum production condition. The optimum conditions for the production of cellulosic ethanol from fruit peel were as follows: the sulfuric acid concentration and reaction time of acid hydrolysis for the ethanol production from an apple rind were 20 wt% and 90 min, respectively. The concentration of sulfuric acid for tangerine peel and a watermelon rind at the hydrolysis time of 60 min were 15 wt% and 10 wt%, respectively. A viscozyme was proven as the best conversion for the ethanol production when using enzymatic saccharification from fruit peels. The optimum enzymatic saccharification time for tangerine peel and apple and watermelon rind were 60, 180, and 120 min, respectively.
  1. Lim DH, KISTI Market Report, 3, 19 (2013)
  2. Demirbas A, Prog. Energ. Combust., 33, 1 (2007)
  3. Saha BC, Cotta MA, Biotechnol. Prog., 22(2), 449 (2006)
  4. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G, Trends Biotechnol., 24, 549 (2006)
  5. Lee SM, Lee JH, Appl. Chem. Eng.
  6. Han SK, Shin HS, Kim SH, Kim HW, J. KORRA, 10, 65 (2002)
  7. Park SJ, Do YH, Choi JS, Yoon YH, Cha IS, Trans. Kor. Hydrog. New Energy Soc., 20, 142 (2009)
  8. Lee NJ, Kim HS, Cha IS, Choi JS, Trans. Kor. Hydrog. New Energy Soc., 22, 257 (2011)
  9. Han HJ, Li H, Kim SJ, Korean J. Biotechnol. Bioeng., 21, 474 (2006)
  10. Lee JC, Kim JH, Park HS, Pak DW, J. Korean Soc. Environ. Eng., 32, 609 (2010)
  11. Harun R, Jason WSY, Cherrington T, Danquah MK, Appl. Energy, 88(10), 3464 (2011)
  12. Xue Y, Jameel H, Phillips R, Chang HM, J. Ind. Eng. Chem., 18(2), 707 (2012)
  13. Halim R, Harun R, Danquah MK, Webley PA, Appl. Energy, 91(1), 116 (2012)
  14. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM, Bioresour. Technol., 101, 75 (2010)
  15. Miranda JR, Passarinho PC, Gouveia L, Bioresour. Technol., 104, 342 (2012)
  16. Harun R, Danquah MK, Process Biochem., 46, 304 (2011)
  17. Zhang B, Shahbazi A, Wang L, Am. J. Eng. Appl. Sci., 3, 328 (2010)
  18. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM, Biochem. Eng. J., 46, 126 (2009)
  19. Kim HS, Lee NJ, Kang KM, Cho JI, Cha IS, Yoon YH, Choi JS, A study on pretreated of fruit wastes for bio-ethanol production, Proceedings of Spring Conference on the Korea Society for Energy Engineering, April 29-30, Daejeon, Korea (2010)
  20. Rabelo SC, Maciel R, Costa AC, Appl. Biochem. Biotechnol., 153(1-2), 139 (2009)
  21. Choi JM, Choi SS, Yeom SH, Appl. Chem. Eng., 23(3), 326 (2012)