화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.6, 632-638, December, 2014
입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구
Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon
E-mail:
초록
입상활성탄을 사용하여 new fuchsin 염료를 흡착하는데 필요한 흡착등온선과 흡착동역학 및 열역학 파라미터들에 대하여 조사하였다. 흡착평형은 Langmuir 흡착등온식이 가장 잘 맞았으며, 등온흡착평형관계로부터 Langmuir 식과 Freundlich 식의 분리계수를 평가한 결과, 분리계수값이 각각 RL = 0.023, 1/n=0.198로 입상활성탄에 의한 new fuchsin 염료의 흡착조작이 유효한 처리방법이 될 수 있음을 알았다. Dubinin-Radushkevich 식으로 구한 흡착에너지값(E = 0.002 kJ/mol)과 Temkin 식으로부터 구한 흡착열상수값(B = 1.920 J/mol)으로부터 흡착공정이 물리흡착공정임을 알았다. 흡착공정에 대한 동력학적 해석을 통해 흡착반응은 유사이차반응속도식이 유사일차반응속도식과 비교하여 일치도가 높은 것으로 나타났으며, 입자 내 확산이 흡착공정의 지배단계이었다. 열역학적 해석을 통해 평가된 엔탈피 변화값(92.49 kJ/mol)과 활성화에너지값(11.79 kJ/mol)으로부터 흡착공정이 흡열반응으로 진행되었다. 또한, 엔트로피 변화값이 313.7 J/mol K로 흡착공정의 무질서도가 증가하였다. 온도가 올라갈수록 자유에너지값이 감소하는 것은 활성탄에 대한 new fuchsin 염료의 흡착반응은 온도가 올라갈수록 자발성이 높아지는 것으로 판단되었다.
Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir (RL = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.
  1. Chakrabarti T, Subrahmanyan PVR, Sundaresan BB, Biotreat. Sys., 2, 171 (1988)
  2. Hema M, Arivoli S, Int. J. Phys. Sci., 2, 10 (2007)
  3. Reife A, Freeman HS, Text. Chem. Color. Am. Dyes. Rep., 32, 56 (2000)
  4. Demirbas A, J. Hazard. Mater., 167(1-3), 1 (2009)
  5. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337 (2008)
  6. Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A, Bioresour. Technol., 96(12), 1364 (2005)
  7. Bayramoglu G, Altintas B, Arica MY, Chem. Eng. J., 152(2-3), 339 (2009)
  8. Bastidas JM, Pinilla P, Cano E, Polo JL, Miguel S, Corros. Sci., 45, 427 (2003)
  9. Churchman JW, J. Exp. Med., 37, 1 (1923)
  10. Fisher AA, Cutis, 26, 363 (1980)
  11. Littlefield NA, Blackwell BN, Hewitt CC, Gaylor DW, Toxicol. Sci., 5, 902 (1985)
  12. Bhole BD, Ganguly B, Madhuram A, Deshpande D, Joshi J, Curr. Sci., 86, 1641 (2004)
  13. Gupta VK, Mittal A, Gajbe V, Mittal J, J. Colloid Interface Sci., 319(1), 30 (2008)
  14. Lan RJ, Li JJ, Chen BH, Int. J. Photoenenrgy, 15, 1 (2013)
  15. Huang LH, Kong JJ, Wang WL, Zhang CL, Niu SF, Gao BY, Desalination, 286, 268 (2012)
  16. Zhang L, Zhou XY, Guo XJ, Song XY, Liu XY, J. Mol. Catal. A-Chem., 335(1-2), 31 (2011)
  17. Elsherbiny AS, Adsorption kinetics and mechanism of acid dye onto montmorillonite from aqueous solutions: stopped-flow measurements, Appl. Clay. Sci., 83-84, 56-62 (2013)
  18. Weber TW, Chakrabarti RK, Ind. Chem. Eng. Fund., 5, 212 (1996)
  19. Fukukawa BH, Activated carbon water treatment technology and management, Y. K. Kim, 69-70, Shinkwang Munhwa Publishing Co. Seoul (1996)
  20. Nethaji S, Sivasamy A, Thennarasu G, Saravanan S, J. Hazard. Mater., 181(1-3), 271 (2010)
  21. Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
  22. Lee JJ, Appl. Chem. Eng., 25(1), 96 (2014)
  23. Lee JJ, Appl. Chem. Eng., 24(3), 327 (2013)
  24. Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253(11), 4843 (2007)
  25. Onal Y, Akmil-Basar C, Eren D, Sarici-Ozdemir C, Depci T, J. Hazard. Mater., 128(2-3), 150 (2006)
  26. Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W, Chemosphere, 53, 655 (2003)
  27. Li Y, Sun J, Du Q, Zhang L, Yang X, Wu S, Xia Y, Wang Z, Xia L, Cao A, J. Carbohydr Polym., 102, 755 (2014)