화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.8, 434-442, August, 2014
유기 태양전지의 개발 현황과 기술 과제
Technical Tasks and Development Current Status of Organic Solar Cells
E-mail:
Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide(CO2) or nitrogen oxides(NOx) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical nonfossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [Cu(In1-xGax)Se2] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.
  1. Mitsubishi Chemicals, MRS Fall meeting, Boston, USA, (2011).
  2. Shinji Aramaki, Mitsubishi Chemical Group Science & Technology Research Center, MRS Fall meeting, Boston, USA (2012).
  3. Yu G, Heeger AJ, J. Appl. Phys., 78(7), 4510 (1995)
  4. Cai WZ, Gong X, Cao Y, Sol. Energy Mater. Sol. Cells, 94(2), 114 (2010)
  5. Kang JW, Kang YJ, Jung S, Song M, Kim DG, Kim CS, Kim SH, Sol. Energy Mater. Sol. Cells, 103, 76 (2012)
  6. Kim KH, Gong SC, Chang HJ, Thin Solid Films, 521, 69 (2012)
  7. Jang SK, Gong SC, Chang HJ, Synth. Met., 162, 426 (2012)
  8. Jo J, Na SI, Kim SS, Lee TW, Chung Y, Kang SJ, Vak D, Kim DY, Adv. Funct. Mater., 19(15), 2398 (2009)
  9. Kim HK, Sol. Energy Mater. Sol. Cells, 122, 152 (2014)
  10. Kim SH, Park BM, Kim GP, Yuh J, Chang YC, Chang HJ, Synth. Met., 192, 101 (2014)
  11. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC, Nat. Mater., 6(7), 497 (2007)
  12. Kim JY, Lee KH, Coates NE, Moses D, Nguyen TQ, Science, 317, 5835 (222)
  13. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Durocher G, Tao Y, Leclerc M, J. Am. Chem. Soc., 130(2), 732 (2008)
  14. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, Hal PA, Janssen RAJ, Angew. Chem., Int. Ed., 42, 3371 (2003)
  15. Lenes M, Wetzelaer GJAH, Kooistra FB, Veenstra SC, Hummelen JC, Blom PWM, Adv. Mater., 20(11), 2116 (2008)
  16. He YJ, Chen HY, Hou JH, Li YF, J. Am. Chem. Soc., 132(4), 1377 (2010)
  17. Amendola V, Mettei G, Cusan C, Prato M, Meneghetti M, Synth. Met., 155, 283 (2005)
  18. Fung DDS, Qiao L, Choy WCH, Wang C, Sha WEI, Xie F, He S, J. Mater. Chem., 21, 16349 (2011)
  19. Li PD, Li XF, Sun CM, Wang GJ, Li J, Jiu TG, Fang JF, Sol. Energy Mater. Sol. Cells, 126, 36 (2014)
  20. Lee YI, Youn JH, Ryu MS, Kim J, Moon HT, J. Jang, Org. Electron., 12(2), 353 (2011)
  21. Schmidt K, Tassone CJ, Niskala JR, Yiu AT, Lee OP, Weiss TM, Wang C, Frechet JMJ, Beaujuge PM, Toney MF, Adv. Mater., 26(2), 300 (2014)
  22. Yang X, Uddin A, Renewable and Sustainable Energy Reviews, 30, 324 (2014)
  23. Guillain F, Tsikritzis D, Skoulatakis G, Kennou S, Wantz G, Vignau L, Sol. Energy Mater. Sol. Cells, 122, 251 (2014)
  24. Kang SB, Noh YJ, Na SI, Kim HK, Sol. Energy Mater. Sol. Cells, 122, 152 (2014)
  25. Kaduwal D, Schleiermacher HF, Schulz-Gericke J, Kroyer T, Zimmermann B, Wurfel U, Sol. Energy Mater. Sol. Cells, 124, 92 (2014)
  26. Das S, Joslin J, Alford TL, Sol. Energy Mater. Sol. Cells, 124, 98 (2014)