화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.1, 62-67, January, 2015
Comparison of different applied voltage waveforms on CO2 reforming of CH4 in an atmospheric plasma system
E-mail:
Sinusoidal and pulse waveforms of applied voltage were employed for CO2 reforming of CH4 to syngas in an atmospheric dielectric barrier discharge reactor. The discharge power of a pulse waveform was higher than that of sinusoidal waveform at the same applied voltage. The plasma reaction by a pulse waveform enhanced the conversion of CO2 and CH4 and the selectivity of H2 and CO. It was confirmed that CO2 reforming of CH4 can be improved by the a daption of pulse-type power supply in a dielectric barrier discharge reactor immersed in an electrically insulating oil bath.
  1. Rostrup-Nielsen JR, Catal. Today, 63(2-4), 159 (2000)
  2. Bradford MCJ, Vannice MA, Catal. Rev.-Sci. Eng., 41(1), 1 (1999)
  3. Martinez R, Romero E, Guimon C, Bilbao R, Appl. Catal. A: Gen., 274(1-2), 139 (2004)
  4. Tao XM, Bai MG, Wu QY, Huang ZJ, Yin YX, Dai XY, Int. J. Hydrog. Energy, 34(23), 9373 (2009)
  5. Indarto A, Choi JW, Lee H, Song HK, Energy, 31(14), 2986 (2006)
  6. Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X, Prog. Energy Combust. Sci., 37, 113 (2011)
  7. Long HL, Shang SY, Tao XM, Yin YP, Dai XY, Int. J. Hydrog. Energy, 33(20), 5510 (2008)
  8. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC, J. Phys. D: Appl. Phys., 44, 274007 (2011)
  9. Promaros E, Assabumrungrat S, Laosiripojana N, Praserthdam P, Tagawa T, Goto S, Korean J. Chem. Eng., 24(1), 44 (2007)
  10. Luna AEC, Iriarte ME, Appl. Catal. A: Gen., 343(1-2), 10 (2008)
  11. Gallon HJ, Tu X, Twigg MV, Whitehead JC, Appl. Catal. B: Environ., 106(3-4), 616 (2011)
  12. Le H, Lobban LL, Mallinson RG, Catal. Today, 89(1-2), 15 (2004)
  13. Liu DP, Lau R, Borgna A, Yang YH, Appl. Catal. A: Gen., 358(2), 110 (2009)
  14. Hwang BB, Yeo YK, Na BK, Korean J. Chem. Eng., 20(4), 631 (2003)
  15. Wang Q, Yan BH, Jin Y, Cheng Y, Plasma Chem. Plasma Process., 29(3), 217 (2009)
  16. Kim TK, Lee WG, J. Ind. Eng. Chem., 18(5), 1710 (2012)
  17. Chen X, Marquez M, Rozak J, Marun C, Luo J, Suib SL, Hayashi Y, Matsumoto H, J. Catal., 178(1), 372 (1998)
  18. Li Y, Xu GH, Liu CJ, Eliasson B, Xue BZ, Energy Fuels, 15(2), 299 (2001)
  19. Yao SL, Nakayama A, Suzuki E, AIChE J., 47(2), 419 (2001)
  20. Brock SL, Shimojo T, Suib SL, Hayashi Y, Matsumoto H, Res. Chem. Intermed., 28, 13 (2002)
  21. Sarmiento B, Brey JJ, Viera IG, Gonzalez-Elipe AR, Cotrino J, Rico VJ, J. Power Sources, 169(1), 140 (2007)
  22. Rico VJ, Hueso JL, Cotrino J, Gonzalez-Elipe AR, J. Phys. Chem. A, 114(11), 4009 (2010)
  23. Yao SL, Nakayama A, Suzuki E, AIChE J., 47(2), 413 (2001)
  24. Goujard V, Tatibouet JM, Batiot-Dupeyrat C, IEEE Trans. Plasma Sci., 37, 2342 (2009)
  25. Benard N, Moreau E, Appl. Phys. Lett., 100, 193503 (2012)
  26. Song HK, Lee H, Choi JW, Na BK, Plasma Chem. Plasma Process., 24(1), 57 (2004)
  27. Lee H, Lee CH, Choi JW, Song HK, Energy Fuels, 21(1), 23 (2007)
  28. Nguyen DB, Lee WG, J. Ind. Eng. Chem., 20(3), 972 (2014)
  29. Zhou LM, Xue B, Kogelschatz U, Eliasson B, Energy Fuels, 12(6), 1191 (1998)
  30. Hammer T, Kappes T, Baldauf M, Catal. Today, 89(1-2), 5 (2004)
  31. Nozaki T, Miyazaki Y, Unno Y, Okazaki K, J. Phys. D: Appl. Phys., 34, 3383 (2001)
  32. Li DH, Li X, Bai MG, Tao XM, Shang SY, Dai XY, Yin YX, Int. J. Hydrog. Energy, 34(1), 308 (2009)
  33. Tao XM, Qi FW, Yin YP, Dai XY, Int. J. Hydrog. Energy, 33(4), 1262 (2008)
  34. Zhang YP, Li Y, Wang Y, Liu CJ, Eliasson B, Fuel Process. Technol., 83(1-3), 101 (2003)
  35. Tu X, Whitehead JC, Appl. Catal. B: Environ., 125, 439 (2012)
  36. Snoeckx R, Aerts R, Tu X, Bogaerts A, J. Phys. Chem. C, 117, 4957 (2013)
  37. Gallon HJ, Tu X, Whitehead JC, Plasma Process. Polym., 9, 90 (2012)