화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.23, No.12, 737-744, December, 2013
열처리를 통한 금 나노입자의 크기 제어와 단일벽 탄소나노튜브의 합성 촉매로의 이용
Size Control of Gold Nanoparticles by Heat Treatment and Its Use as a Catalyst for Single-Walled Carbon Nanotube Growth
E-mail:
We demonstrated size control of Au nanoparticles by heat treatment and their use as a catalyst for single-walled carbon nanotube (SWNTs) growth with narrow size distribution. We used uniformly sized Au nanoparticles from commercial Au colloid, and intentionally decreased their size through heat treatment at 800 oC under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates to achieve parallel alignment of the SWNTs and to investigate the size relationship between Au nanoparticles and SWNTs. After the SWNTs were grown via chemical vapor deposition using methane gas, it was found that a high degree of horizontal alignment can be obtained when the particle density is low enough to produce individual SWNTs. The diameter of the Au nanoparticles gradually decreased from 3.8 to 2.9 nm, and the mean diameter of the SWNTs also changed from 1.6 to 1.2 nm for without and 60 min heat treatment, respectively. Raman results reconfirmed that the prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distribution. This work demonstrated that heat treatment can be a straightforward and reliable method to control the size of catalytic nanoparticles and SWNT diameter.
  1. Liu Z, Lial L, Yao Y, Xian X, Zhang J, Adv. Mater., 22, 1 (2010)
  2. Liu H, Tanaka T, Urabe Y, Kataura H, Nano Lett., 13, 1996 (2013)
  3. R. Saito, M. S. Dresselhaus and G. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London. (1998)
  4. Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE, Nature, 388(6639), 257 (1997)
  5. Jeong GH, Farajian AA, Hatakeyama R, Hirata T, Yaguchi T, Tohji K, Mizuseko H, Kawazoe Y, Phys. Rev. B, 68, 075410 (2003)
  6. Ishida M, Hongo H, Nihey F, Ochiai Y, Jpn. J. Appl. Phys., 43, L1356 (2004)
  7. Javey A, Dai HJ, J. Am. Chem. Soc., 127(34), 11942 (2005)
  8. Li YM, Kim W, Zhang YG, Rolandi M, Wang DW, Dai HJ, J. Phys. Chem. B, 105(46), 11424 (2001)
  9. Choi HC, Kim W, Wang DW, Dai HJ, J. Phys. Chem. B, 106(48), 12361 (2002)
  10. Jeong GH, Suzuki S, Kobayashi Y, Yamazaki A, Yoshimura H, Homma Y, J. Appl. Phys., 98, 124311 (2005)
  11. Jeong GH, Suzuki S, Kobayashi Y, Yamazaki A, Yoshimura H, Homma Y, Appl. Phys. Lett., 90, 043108 (2007)
  12. Song WS, Jeon CH, Kim YS, Kwon YT, Jung DS, Jang SW, Choi WC, Park JS, Saito R, Park CY, ACS Nano, 4, 1012 (2010)
  13. Ago H, Ayagaki Y, Ogawa Y, Tsuji M, J. Phys. Chem. C, 115, 13247 (2011)
  14. Li Y, Mann D, Rolandi M, Kim W, Ural A, Huang S, Javey A, Cao J, Wang D, Yenilmez E, Wang Q, Gibbons JF, Nishi Y, Dai H, Nano Lett., 4, 317 (2004)
  15. Kato T, Hatakeyama R, J. Am. Chem. Soc., 130(25), 8101 (2008)
  16. Yu X, Zhang J, Choi W, Choi J, Kim JM, Gan L, Liu Z, Nano Lett., 10, 3343 (2010)
  17. Liu J, Wang C, Tu X, Liu B, Chen L, Zheng M, Zhou C, Nat. Commun., 3, 1199 (2012)
  18. Kim JJ, Lee BJ, Lee SH, Jeong GH, Nanotechnology, 23, 105607 (2012)
  19. Ago H, Nakamura K, Ikeda K, Uehara N, Ishigami N, Tsuji M, Chem. Phys. Lett., 408(4-6), 433 (2005)
  20. Kocabas C, Hur SH, Gaur A, Meitl M, Shim M, Rogers J, Small, 11, 1110 (2005)
  21. Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA, Nat. Nanotechnol., 2(4), 230 (2007)
  22. Jeong GH, Yamazaki Y, Suzuki S, Yoshimura H, Kabayashi Y, Homma Y, Carbon, 45, 978 (2007)
  23. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS, Science, 275(5297), 187 (1997)
  24. Meyer J, Paillet M, Michel T, Moreac A, Neumann A, Duesberg G, Roth S, Sauvajol JL, Phys. Rev. Lett., 95, 217401 (2005)