- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.23, No.8, 405-422, August, 2013
원자층증착 기술: 개요 및 응용분야
Atomic Layer Deposition: Overview and Applications
E-mail:
Atomic layer deposition(ALD) is a promising deposition method and has been studied and used in many different areas, such as displays, semiconductors, batteries, and solar cells. This method, which is based on a self-limiting growth mechanism, facilitates precise control of film thickness at an atomic level and enables deposition on large and three dimensionally complex surfaces. For instance, ALD technology is very useful for 3D and high aspect ratio structures such as dynamic random access memory(DRAM) and other non-volatile memories(NVMs). In addition, a variety of materials can be deposited using ALD, oxides, nitrides, sulfides, metals, and so on. In conventional ALD, the source and reactant are pulsed into the reaction chamber alternately, one at a time, separated by purging or evacuation periods. Thermal ALD and metal organic ALD are also used, but these have their own advantages and disadvantages. Furthermore, plasma-enhanced ALD has come into the spotlight because it has more freedom in processing conditions; it uses highly reactive radicals and ions and for a wider range of material properties than the conventional thermal ALD, which uses H2O and O3 as an oxygen reactant. However, the throughput is still a challenge for a current time divided ALD system. Therefore, a new concept of ALD, fast ALD or spatial ALD, which separate half-reactions spatially, has been extensively under development. In this paper, we reviewed these various kinds of ALD equipment, possible materials using ALD, and recent ALD research applications mainly focused on materials required in microelectronics.Atomic layer deposition(ALD) is a promising deposition method and has been studied and used in many different areas, such as displays, semiconductors, batteries, and solar cells. This method, which is based on a self-limiting growth
mechanism, facilitates precise control of film thickness at an atomic level and enables deposition on large and three dimensionally complex surfaces. For instance, ALD technology is very useful for 3D and high aspect ratio structures such as dynamic random access memory(DRAM) and other non-volatile memories(NVMs). In addition, a variety of materials can be deposited using ALD, oxides, nitrides, sulfides, metals, and so on. In conventional ALD, the source and reactant are pulsed into the reaction chamber alternately, one at a time, separated by purging or evacuation periods. Thermal ALD and metal organic ALD are also used, but these have their own advantages and disadvantages. Furthermore, plasma-enhanced ALD has come into the spotlight because it has more freedom in processing conditions; it uses highly reactive radicals and ions and for a wider range of material properties than the conventional thermal ALD, which uses H2O and O3 as an oxygen reactant. However, the throughput is still a challenge for a current time divided ALD system. Therefore, a new concept of ALD, fast ALD or spatial ALD, which separate half-reactions spatially, has been extensively under development. In this paper, we reviewed these various kinds of ALD equipment, possible materials using ALD, and recent ALD research applications mainly focused on materials required in microelectronics.
- Suntola T, Thin Solid Films, 216, 84 (1992)
- Suntola T, Mater. Sci. Rep., 4, 261 (1989)
- Tischler MA, Bedair SM, Appl. Phys. Lett., 49, 274 (1986)
- McDermott BT, El-Masry NA, Tischler MA, Bedair SM, Appl. Phys. Lett., 51, 1830 (1987)
- Horikoshi Y, Kawashima M, Yamaguchi H, Appl. Phys. Lett., 50, 1686 (1987)
- Triyoso DH, Hegde RI, Grant J, Fejes P, Liu R, Roan D, Ramon M, Werho D, Rai R, La LB, Baker J, Garza C, Guenther T, White BE, Tobin PJ, J. Vac. Sci. Technol. B, 22(4), 2121 (2004)
- Lee GH, Kim KR, Yang HJ, Park SK, Cho GS, Choi ES, Song YH, Jpn. J. Appl. Phys., 51, 116501 (2012)
- Poodt P, Cameron DC, Dickey E, George SM, Kuznetsov V, Parsons GN, Roozeboom F, Sundram G, Vermeer A, J. Vac. Sci. Technol. A, 30, 010802 (2012)
- Leskela M, Ritala M, Angew. Chem. Int. Ed., 42, 5548 (2003)
- Kim H, Thin Solid Films, 519(20), 6639 (2011)
- Kim H, Jeon WS, Jung SH, Ahn BT, Electrochem. Solid State Lett., 8(10), G294 (2005)
- Kim JY, Kim DY, Park HO, Jeon H, J. Electrochem. Soc., 151, G29 (2005)
- Knoops HCM, Mackus AJM, Donders ME, van de Sanden MCM, Notten PHL, Kessels WMM, Electrochem. Solid State Lett., 12(7), G34 (2009)
- Liu XY, Ramanathan S, Longdergan A, Srivastava A, Lee E, Seidel TE, Barton JT, Pang D, Gordon RG, J. Electrochem. Soc., 152(3), G213 (2005)
- Ma DJ, Park SH, Seo BS, Choi SJ, Lee NS, Lee JH, J. Vac. Sci. Technol. B, 23(1), 80 (2005)
- Nieminen M, Putkonen M, Niinisto L, Appl. Surf. Sci., 174(2), 155 (2001)
- Kostamo J, Saanila V, Tuominen M, Haukka S, Elers KE, Soininen M, Li WM, Leinikka M, Kaipio S, Huotari H, Paper presented at AVS Topical Conference on Atomic Layer Deposition 2002, Aug 19-21. (2002)
- Leskela M, Ritala M, J. Phys. IV, 5, 937 (1995)
- Niinisto L, Ritala M, Leskela M, Mater. Sci. Eng. B, 41, 23 (1996)
- George SM, Ott AW, Klaus JW, J. Phys. Chem., 100(31), 13121 (1996)
- Ott AW, Johnson JM, Klus JW, George SM, Appl. Surf. Sci., 112, 205 (1997)
- Ott AW, Klaus JW, Johnson JM, George SM, Thin Solid Films, 292(1-2), 135 (1997)
- Ritala M, Asikainen T, Leskela M, Solid-State Lett., 1, 156 (1998)
- Lindblad M, Haukka S, Kytokivi A, Lakomaa E, Rautiainen A, Suntola T, Appl. Surf. Sci., 121/122, 286 (1997)
- Haukka S, Lakomaa E, Root A, J. Phys. Chem., 97, 5085 (1993)
- Haukka S, Lakomaa EL, Jylha O, Vilhunen J, Hornytzkyj S, Langmuir, 9(12), 3497 (1993)
- Kytokivi A, Lakomaa EL, Root A, Osterholm H, Jacobs JP, Brongersma HH, Langmuir, 13(10), 2717 (1997)
- Matero R, Thin Solid Films, 368(1), 1 (2000)
- Groner MD, Fabreguette FH, Elam JW, George SM, Chem. Mater., 16, 639 (2004)
- Ferguson JD, Weimer AW, George SM, J. Vac. Sci. Technol. A, 23(1), 118 (2005)
- Yamada A, Sang BS, Konagai M, Appl. Surf. Sci., 112, 216 (1997)
- Ott AW, Chang RPH, Mater. Chem. Phys., 58, 132 (1999)
- Yousfi EB, Fouache J, Lincot D, Appl. Surf. Sci., 153(4), 223 (2000)
- Kowalik IA, Guziewicz E, Kopalko K, Yatsunenko S, Wojcik-Glodowska A, Godlewski M, Dluzewski P, Lusakowska E, Paszkowicz W, J. Cryst. Growth, 311(4), 1096 (2009)
- Roy RJ, Solid State Chem., 111, 11 (1994)
- Tiznado H, Bournan M, Kang BC, Lee K, Zaera F, J. Mol. Catal. A-Chem., 281(1-2), 35 (2008)
- Caubet P, Blomberg T, Benaboud R, Wyon C, Blanquet E, Gonchond JP, Juhel M, Bouvet P, Gros-Jean M, Michailos J, Richard C, Iteprat B, J. Electrochem. Soc., 155(8), H625 (2008)
- Consiglio S, Zeng WX, Berliner N, Eisenbraun ET, J. Electrochem. Soc., 155(3), H196 (2008)
- Kim H, J. Vac. Sci. Technol. B, 21(6), 2231 (2003)
- Ritala M, Kalsi P, Riihela D, Kukli K, Leskela M, Jokinen J, Chem. Mater., 11, 1712 (1999)
- Leskela M, Ritala M, J. Phys. IV, 9, 837 (1999)
- Park JS, Lee MJ, Lee CS, Kang SW, Electrochem. Solid State Lett., 4(4), C17 (2001)
- Profijt HB, Potts SE, Van MCM, De Sanden V, Kessels WMM, J. Vac. Sci. Technol. A, 29, 050801 (2011)
- Hiltunen M, Leskela M, Makela L, Niinisto E, Nykanen E, Soininen P, Thin Solid Films, 166, 149 (1988)
- Jeon H, Lee JW, Kim YD, Kim DS, Yi KS, J. Vac. Sci. Technol. A, 18(4), 1595 (2000)
- Ahn CH, Cho SG, Lee HJ, Park KH, Jeong SH, Met. Mater. Int., 7, 621 (2001)
- Uhm J, Jeon H, Jpn. J. Appl. Phys., 40, 4657 (2001)
- Choi K, Lysaght P, Alshareef H, Huffman C, Wen HC, Harris R, Luan H, Hung PY, Sparks C, Cruz M, Matthews K, Majhi P, Lee BH, Thin Solid Films, 486(1-2), 141 (2005)
- Cheng HE, Lee WJ, Hsu CM, Thin Solid Films, 485(1-2), 59 (2005)
- Ritala M, Leskela M, Rauhala E, Haussalo P, J. Electrochem. Soc., 142(8), 2731 (1995)
- Ritala M, Asikainen T, Leskela M, Jokinen J, Lappalainen R, Uriainen M, Niinisto L, Ristolainin E, Appl. Surf. Sci., 120, 199 (1997)
- Bosund M, Aierken A, Tiilikainen J, Hakkarainen T, Lipsanen H, Appl. Surf. Sci., 254(17), 5385 (2008)
- Juppo M, Ritala M, Leskela M, J. Electrochem. Soc., 147(9), 3377 (2000)
- Juppo M, Alen P, Ritala M, Sajavaara T, Keinonen J, Leskela M, Electrochem. Solid State Lett., 5(1), C4 (2002)
- Park JS, Kang SW, Electrochem. Solid State Lett., 7(8), C87 (2004)
- Heil SBS, Langereis E, Roozeboom F, van de Sanden MCM, Kessels WMM, J. Electrochem. Soc., 153(11), G956 (2006)
- Park JS, Kang SW, Kim H, J. Vac. Sci. Technol. B, 24(3), 1327 (2006)
- Heil SBS, van Hemmen JL, Hodson CJ, Singh N, Klootwijk JH, Roozeboom F, de Sanden MCMV, Kessels WMM, J. Vac. Sci. Technol. A, 25(5), 1357 (2007)
- Elers KE,Saanila V, Soininen PJ, Kostamo JT, Haukka S, Juhanoja J, Besling WFA, Chem. Vap. Deposition, 8, 149 (2002)
- Yun JH, Choi ES, Jang CM, Lee CS, Jpn. J. Appl. Phys. Part 2, 41, L418 (2002)
- Kim HK, Kim JY, Park JY, Kim Y, Kim YD, Jeon H, Kim WM, J. Korean Phys. Soc., 41, 739 (2002)
- Fillot F, Morel T, Minoret S, Matko I, Maitrejean S, Guillaumot B, Chenevier B, Billon T, Microelectron. Eng., 82, 248 (2005)
- Min JS, Son YW, Kang WG, Chun SS, Kang SW, Jpn. J.Appl. Phys., 37, 4999 (1998)
- Elam JW, Schuisky M, Ferguson JD, George SM, Thin Solid Films, 436(2), 145 (2003)
- Elers KE, Winkler J, Weeks K, Marcus S, J. Electrochem. Soc., 152(8), G589 (2005)
- Klaus JW, Ferro SJ, George SM, Thin Solid Films, 360(1-2), 145 (2000)
- HSC Chemistry, 5.11 edition; Outokumpu Research Oy : Pori, Finland. Values are given at 0 oC.
- Grubbs RK, Steinmetz NJ, George SM, J. Vac. Sci. Technol. B, 22(4), 1811 (2004)
- Fabreguette FH, Sechrist ZA, Elam JW, George SM, Thin Solid Films, 488(1-2), 103 (2005)
- Elam JW, Nelson CE, Grubbs RK, George SM, Appl. Surf. Sci., 479, 121 (2001)
- Luoh T, Su CT, Yang TH, Chem KC, Lu CY, Microelectron. Eng., 85, 1739 (2008)
- Elliott SD, Langmuir, 26(12), 9179 (2010)
- Wang HT, Gordon RG, Alvis R, Ulfig RM, Chem. Vap. Deposition, 15, 312 (2009)
- Aaltonen T, Ritatla M, Sajavaara T, Keinonen J, Leskela M, Chem. Mater., 15, 1924 (2003)
- Hamalainen J, Munnik F, Ritala M, Leskela M, Chem. Mater., 20, 6840 (2008)
- Aaltonen T, Ritala M, Leskela M, Electrochem. Solid State Lett., 8(8), C99 (2005)
- Aaltonen T, Ritala M, Sammelselg V, Leskela M, J. Electrochem. Soc., 151(8), G489 (2004)
- Aaltonen T, Rahtu A, Ritala M, Leskela M, Electrochem. Solid State Lett., 6(9), C130 (2003)
- Park KJ, Terry DB, Stewart SM, Parsons GN, Langmuir, 23(11), 6106 (2007)
- Knapas K, Ritala M, Chem. Mater., 20, 5698 (2008)
- Lim BS, Rahtu A, Gordon RG, Nat. Mater., 2(11), 749 (2003)
- Solanki R, Pathangey B, Electrochem. Solid State Lett., 3(10), 479 (2000)
- Park TY, Lee JS, Park JG, Jeon HY, Jeon H, J. Vac. Sci. Technol. A, 30, 01A139 (2012)
- Kim HJ, Micro. Eng., 106, 69 (2013)
- Elam JW, Zinovev A, Han CY, Wang HH, Welp U, Hryn JN, Pellin MJ, Thin Solid Films, 515(4), 1664 (2006)
- Liu H, Xu K, Zhang X, Ye PD, Appl. Phys. Lett., 100, 152115 (2012)
- Martinson ABF, Riha SC, Thimsen E, Elam JW, Pellin MJ, Energy Environ. Sci., 6, 1868 (2013)
- Short A, Jewell L, Doshay S, Church C, Keiber T, Bridges F, Carter S, Alers G, J. Vac. Sci. Technol. A, 31, 01A138 (2013)
- Kim JY, George SM, J. Phys. Chem. C, 114, 17597 (2010)
- Sarkar SK, Kim JY, Goldstein DN, Neale NR, Zhu K, Elliott CM, Frank AJ, George SM, J. Phys. Chem. C, 114, 8032 (2010)
- Wedemeyer H, Michels J, Chmielowski R, Bourdais S, Muto T, Sugiura M, Dennler G, Bachmann J, Energy Environ. Sci., 6, 67 (2013)
- Pore V, Ritala M, Leskela M, Chem. Vap. Deposition, 13, 163 (2007)
- Choi WS, J. Korean Phys. Soc., 57, 1472 (2010)
- Shin YH, Kim Y, J. Korean Phys. Soc., 61, 594 (2012)
- Jeon S, Bang S, Lee S, Kwon S, Jeong W, Jeon H, J. Korean Phys. Soc., 53, 3287 (2008)
- Ye ZY, Lu HL, Gu YG, Xie ZY, Zhang Y, Sun QQ, Ding SJ, Zhang DW, Nanoscale Res. Lett., 9, 108 (2013)
- Gordon RG, Hausmann D, Kim E, Sherpard J, Chem. Vap. Dep., 9, 73 (2003)
- Wotczak SC, Gaitan M, Suehle JS, Peckerar MC, Ma DI, Solid-State Electron., 37, 10 (1994)
- Lim JW, Yun SJ, Lee JH, Electrochem Solid-State Lett., 73, F73 (2004)
- Kim SK, Kim WD, Kim KM, Hwang CS, Appl. Phys. Lett., 85, 4112 (2004)
- Rios R, Arora ND, Tech. Dig. Int. Electron Devices Meet., 613 (1994)
- Cao M, Voorde PV, Cos M, Green W, IEEE Electron Device Lett., 19, 291 (1998)
- Robertson J, J. Vac. Sci. Technol. B, 18(3), 1785 (2000)
- Hubbard KJ, Schlom DG, J. Mater. Res., 11, 2757 (1996)
- Koo JH, Kim SH, Jeon SM, Jeon H, J. Korean Phys. Soc., 48, 1 (2006)
- Kim H, Woo S, Lee J, Kim H, Kim Y, Lee H, Jeon H, J. Electrochem. Soc., 157(4), H479 (2010)
- Kim S, Woo S, Hong H, Kim H, Jeon H, Bae C, J. Electrochem. Soc., 154(2), H97 (2007)
- Lee JH, Koo JH, Sim HS, Jeon H, J. Korean Phys. Soc., 44, 4 (2004)
- Kim SK, Lee SW, Han JH, Lee B, Han S, Hwang CS, Adv. Funct. Mater., 20(18), 2989 (2010)
- Lee SW, Han JH, Han SR, Lee WG, Jang JH, Se MH, Kim SK, Dussarraat C, Garineau J, Min YS, Hwang CS, Chem. Mat., 23, 2227 (2011)
- Ahn KH, Baik SG, Kim SS, J. Appl. Phys., 92, 2651 (2002)
- Bez R, Camerlenghi E, Modelli A, Visconti A, Proc. IEEE, 91, 489 (2003)
- Irrera F, Piccoli I, Puzzilli G, Rossini M, Vali T, Microelectron. Reliab., 49, 135 (2009)
- Lee JD, Hur SH, Choi JD, IEEE Electron Device Lett., 23, 264 (2002)
- Atwood G, IEEE Trans. Device Mater. Reliab., 4, 301 (2004)
- Van den Bosch G, Kar GS, Blomme P, Arreghini A, Cacciato A, Breuil L, De Keersgieter A, Paraschiv V, Vrancken C, Douhard B, Richard O, Van Aerde S, Debusschere I, Van Houdt J, IEEE Electron Device Lett., 32, 1501 (2011)
- Yokoyama S, Nakashima Y, Ooba K, J. Korean Phys. Soc., 35, S71 (1999)
- Baek IG, Park CJ, Ju H, Seong DJ, Ahn HS, Kim JH, Yang MK, Song SH, Kim EM, Park SO, Park CH, Song CW, Jeong GT, Choi S, Kang HK, Chung C, IEEE Int. Electron Devices Meet., 31, 737 (2011)
- Lu Y, Gao B, Fu Y, Chen B, Liu L, Liu X, Kang J, IEEE Electron Device Lett., 33, 306 (2012)
- Wang Z, Zhu WG, Du AY, Wu L, Fang Z, Tran XA, Liu WJ, Zhang KL, Yu HY, IEEE Trans. Electron Devices, 59, 1203 (2012)
- Jeong HY, Kim YI, Lee JY, Choi SY, Nanotechnology, 120, 115203 (2010)
- Chen YY, Pourtois G, Clima S, Govoreanu B, Goux L, Fantini A, Degreave R, Groeseneken G, Wouters D, Jurczak M, Pac. Rim Int. Conf. Adv. Mater. Process., Proc. Meet., 2806 (2012)
- Wu Y, Lee B and Wong HSP, Int. Symp. VLSI Technol., Syst., Appl. (VLSI-TSA), Proc. Tech. Pap.,136. (2010)
- Kondo H, Arita M, Fujii T, Kaji H, Moniwa M, Yamaguchi T, Fujiwara I, Yoshimaru M, Takahashi Y, Jpn. J. Appl. Phys., 50, 081101 (2011)
- Chen L, Yang W, Li Y, Sun QQ, Zhou P, Lu HL, Ding SJ, Zhang DW, J. Vac. Sci. Technol. A, 30, 01A148 (2012)
- Nardi F, Balatti S, Larentis S, Gilmer DC, Ielmini D, IEEE Trans. Electron Devices., 60, 70 (2013)
- Yu S, Chen HY, Gao B, Kang J, Wong HSP, ACS Nano, 7, 2320 (2013)
- Ovshinsky SR, Phy. Rev. Lett., 21, 1450 (1968)
- Horii H, Yi JH, Park JH, HA YH, Baek IG, Park SO, Hwang YN, Lee SH, Kim YT, Lee KH, Chung UI, Moon JT, Symp. VLSI Technol., Dig. Tech. Pap., 177 (2003)
- Pirovano A, Lacaita AL, Benvenuti A, Pellizzer F, Bez R, IEEE Int. Electron Devices Meet., 29.6.1 (2003)
- Ahn SJ, Hwang YN, Song YJ, Lee SH, Lee SY, Park JH, Jeong CW, Ryoo KC, Shin JM, Park JH, Fai Y, Oh JH, Koh GH, Jeong GT, Joo SH, Choi S, Son YH, Shin JC, Kim YT, Jeong HS, Kim K, Dig. Tech. Pap. Symp. VLSI Technol., 98 (2005)
- Cho SL, Yi JH, Ha YH, Kuh BJ, Lee CM, Park JH, Nam SD, Horii H, Cho BO, Ryoo KC, Park SO, Kim HS, Chung UI, Moon JT and Ryu BI, Dig. Tech. Pap. Symp. VLSI Technol., 96 (2005)
- Kolobov AV, Fons P, Tominaga J, Ovshinsky SR, Phys. Rev. B, 87, 165206 (2013)
- A1-Agel FA, A1-Arfaj EA, A1-Marzouki FM, Khan SA, Khan ZH, A1-Ghamdi AA, Mater. Sci. Semicond. Process., 16, 884 (2013)
- Cho SL, Dig. Tech. Pap. Symp. VLSI Technol., 6B-1, 96 (2005)
- Choi BJ, Choi S, Shin YC, Hwang CS, Lee JW, Jeong J, Kim YJ, Hwang SY, Hong SK, J. Electrochem. Soc., 154(4), H318 (2007)
- Kim RY, Kim HG, Yoon SG, Appl. Phys. Lett., 89, 10 (2006)
- Lee J, Choi S, Lee C, Kang Y, Kim D, Appl. Surf. Sci., 253(8), 3969 (2007)
- Milliron DJ, Raoux S, Shelby R, Jordan-Sweet J, Nat. Mater., 6(5), 352 (2007)
- Venkatasamy V, Shao I, Huang Q, Stickney JL, J. Electrochem. Soc., 155(11), D693 (2008)
- Shao I, Huang Q, Stickney JL, Venkatasamy V, US Patent 20090011577. (2009)
- Eom T, Choi S, Choi BJ, Lee MH, Gwon T, Rha SH, Lee W, Kim MS, Xiao M, Buchanan I, Cho DY, Hwang CS, Chem. Mater., 24, 2099 (2013)