화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.23, No.8, 469-475, August, 2013
Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성
Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition
E-mail:,
Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (~7.00 × 10. 4 Ω·cm), high transmittance (~83.2 %), and the best FOM (5.71 × 10.3Ω.1). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.
  1. Minami T, Semicond. Sci. Technol., 20, S35 (2005)
  2. Kim MS, J. KIEEME, 26, 194 (2013)
  3. Yun S, Lee J, Yang J, Lim S, Phys. B, 405, 413 (2010)
  4. Jaramillo R, Ramanathan S, Sol. Energy Mater. Sol. Cells, 95(2), 602 (2011)
  5. Agura H, Suzuki A, Matsushita T, Aoki T, Okuda M, Thin Solid Films, 445(2), 263 (2003)
  6. Kuo SY, Chen WC, Lai FI, Cheng CP, Kuo HC, Wang SC, Hsieh WF, J. Cryst. Growth, 287(1), 78 (2006)
  7. Baji Z, Labadi Z, Horvath ZE, Barsony I, Thin Solid Films, 520(14), 4703 (2012)
  8. Jimenez-Cadena G, Comini E, Ferroni M, Vomiero A, Sberveglieri G, Mater. Chem. Phys., 124(1), 694 (2010)
  9. Fragala ME, Malandrino G, Giangregorio MM, Losurdo M, Bruno G, Lettieri S, Amato LS, Maddalena P, Chem. Vap. Deposition, 15, 327 (2009)
  10. Dasqupta NP, Neubert S, Lee WY, Trejo O, Lee JR, Prinz FB, Chem. Mater., 22, 4769 (2010)
  11. Banerjee P, Lee WJ, Bae KR, Lee SB, Rubloff GW, J. Appl. Phys., 108, 043501 (2010)
  12. Geng Y, Xie ZY, Xu SS, Sun QQ, Ding SJ, Lu HL, Zhang DW, J. Solid. State. Electrochem., 1, N45 (2012)
  13. Li Z, Shi TJ, Guo LY, J. Serb. Chem. Sic., 75, 385 (2010)
  14. Kim SKH, Shim KB, Ahn JP, Kim CS, J. Kor. Ceram. Soc., 45, 167 (2008)
  15. Kim JW, Kim HB, J. Kor. Phys. Soc., 59, 2349 (2011)
  16. Yang B, Feng P, Kumar A, Katiyar RS, Achermann M, J. Phys. D: Appl. Phys., 42, 195402 (2009)
  17. Fu Y, Du H, Zhang S, Huang W, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 403, 25 (2005)
  18. Yu XH, Ma J, Ji F, Wang YH, Cheng CF, Ma HL, Appl. Surf. Sci., 245(1-4), 310 (2005)
  19. Elangovan E, Singh MP, Ramamurthi K, Mater. Sci. Eng. B, 113, 143 (2004)
  20. Jain A, Sagar P, Mehra RM, Mater Sci-Poland, 25, 1 (2007)
  21. Lee DJ, Kim HM, Kwon JY, Choi H, Kim SH, Kim KB, Adv. Funct. Mater., 21(3), 448 (2011)
  22. Kim JW, Kim DK, Kim HB, J. KIEEME, 24, 177 (2011)
  23. Jeong WJ, Park GC, Sol. Energ Mater. Sol. Cell., 65, 37 (2001)
  24. Lin SS, Huang JL, Ceram. Int., 30, 497 (2004)
  25. Islam MN, Samantaray BK, Chopra KL, Acharya HN, Sol. Energ Mater. Sol. Cell, 29, 27 (1993)