Korean Journal of Materials Research, Vol.23, No.4, 240-245, April, 2013
Grade II 순수 타이타늄의 단시간 양극산화에 의한 TiO2 나노튜브 형성
TiO2 Nanotubular Formation on Grade II Pure Titanium by Short Anodization Processing
E-mail:
Electrochemical surface treatment is commonly used to form a thin, rough, and porous oxidation layer on the surface of titanium. The purpose of this study was to investigate the formation of nanotubular titanium oxide arrays during short anodization processing. The specimen used in this study was 99.9% pure cp-Ti (ASTM Grade II) in the form of a disc with diameter of 15 mm and a thickness of 1 mm. A DC power supplier was used with the anodizing apparatus, and the titanium specimen and the platinum plate (3 mm ×4 mm× 0.1 mm) were connected to an anode and cathode, respectively. The progressive formation of TiO2 nanotubes was observed with FE-SEM (Field Emission Scanning Electron Microscopy). Highly ordered TiO2 nanotubes were formed at a potential of 20 V in a solution of 1M H3PO4 + 1.5 wt.% HF for 10 minutes, corresponding with steady state processing. The diameters and the closed ends of TiO2 nanotubes measured at a value of 50 cumulative percent were 100 nm and 120 nm, respectively. The TiO2 nanotubes had lengths of 500 nm. As the anodization processing reached 10 minutes, the frequency distribution for the diameters and the closed ends of the TiO2 nanotubes was gradually reduced. Short anodization processing for TiO2 nanotubes of within 10 minutes was established.
- Kwon OS, Roo GH, Park GB, Lee MH, Bae TS, Lee OY, J. Kor. Inst. Met & Mater., 43, 117 (2005)
- Han Y, Xu K, Biomed J, Mater. Res., 71A, 608 (2004)
- Wennerberg A, Albrektsson T, Andersson B, Krol JJ, Clin. Oral Impl. Res., 6, 24 (1995)
- Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG, J. Dent. Res., 83, 529 (2004)
- Moncler SS, Testori T, Bernard JP, J. Biomed. Mater. Res., 15(46) (2004)
- Kim HM, Miyaj Fi, Kokubo T, Nakamura T, J. Biomed. Mater. Res., 32, 409 (1996)
- Roh SR, Lee YR, Song HJ, Park YJ, Korean J. Mater. Res., 10(16), 606 (2006)
- Kim HS, Lee KM, Lee DJ, Park SW, Lee KK, Korean J. Mater. Res., 1, 6 (2007)
- Macak JM, Tsuchiya H, Schmuki P, Angew. Chem. Int. Ed., 44, 2100 (2005)
- Zhoa J, Wang X, Chen R, Li L, Solid State Commun., 134, 705 (2005)
- Sirotna JML, Schmuki P, Electrochim. Acta, 50, 3679 (2005)
- Beranek R, Hildebrand H, Schmuki P, Electrochem. Solid State Lett., 6(3), B12 (2003)
- Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirotna K, Schmuki P, Electrochem. Commun., 7, 576 (2005)
- Mor KG, Varghese OK, Paulose M, Mukherjee N, Grimes CA, J. Mater. Res., 18, 2588 (2003)
- Yang B, Uchida M, Kim HM, Zhang X, Kokubo T, Biomater., 25, 1003 (2004)
- Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, J. Mater. Res., 16, 3331 (2001)
- Schmidt-Stein F, Thiemann S, Berger S, Hahn R, Schmuki P, Acta Mater., 58, 6317 (2010)
- Shin Y, Lee S, Nano Lett., 8, 3171 (2008)
- Li G, Liu ZQ, Lu J, Wang L, Zhang Z, Appl. Surf. Sci., 255(16), 7323 (2009)
- Zhao J, Wang X, Sun T, Li L, Nanotech., 16, 2450 (2005)
- Neupane MP, Park IS, Lee MH, Bae TS, Watari F, Bio-Med Mater Eng., 19, 77 (2009)
- Demetrescu I, Ionita D, Pirvu C, Portan D, Mol. Cryst. Liq. Cryst., 521, 195 (2010)
- Wan J, Yan X, Ding J, Wang M, Hu K, Mater. Charact., 60, 1534 (2009)
- Vasilev K, Poh Z, Kant K, Chan J, Michelmore A, Losic D, Biomater., 31, 532 (2010)
- Kaneco S, Chen Y, Westerhoff P, Crittenden JC, Scripta Mater., 56, 373 (2007)
- Jaeggi C, Kern P, Michler J, Patscheider J, Tharian J, Munnik F, Surf. Interface. Anal., 38, 182 (2006)
- Minagar S, Berndt CC, Wanga J, Ivanova E, Wen C, Acta Biomater., 8, 2875 (2012)
- Bauer S, Kleber S, Schmuki P, Electrochem. Commun., 8, 1321 (2006)
- Raja KS, Misra M, Paramguru K, Electrochim. Acta, 51(1), 154 (2005)
- Tsuchiya H, Macak JM, Ghicov A, Tang YC, Fujimoto S, Niinomi M, Noda T, Schmuki P, Electrochim. Acta, 52(1), 94 (2006)