화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.23, No.1, 35-40, January, 2013
50 μm 기판을 이용한 a-Si:H/c-Si 이종접합 태양전지 제조 및 특성 분석
a-Si:H/c-Si Heterojunction Solar Cell Performances Using 50 μm Thin Wafer Substrate
E-mail:
In this study, the influence on the surface passivation properties of crystalline silicon according to silicon wafer thickness, and the correlation with a-Si:H/c-Si heterojunction solar cell performances were investigated. The wafers passivated by p(n)-doped a-Si:H layers show poor passivation properties because of the doping elements, such as boron(B) and phosphorous(P), which result in a low minority carrier lifetime (MCLT). A decrease in open circuit voltage (Voc) was observed when the wafer thickness was thinned from 170 μm to 50 μm. On the other hand, wafers incorporating intrinsic (i) a-Si:H as a passivation layer showed high quality passivation of a-Si:H/c-Si. The implied Voc of the ITO/p a-Si:H/i a-Si:H/n c-Si wafer/ i a-Si:H/n a-Si:H/ITO stacked layers was 0.715 V for 50 μm c-Si substrate, and 0.704 V for 170 μm c-Si. The Voc in the heterojunction solar cells increased with decreases in the substrate thickness. The high quality passivation property on the c- Si led to an increasing of Voc in the thinner wafer. Short circuit current decreased as the substrate became thinner because of the low optical absorption for long wavelength light. In this paper, we show that high quality passivation of c-Si plays a role in heterojunction solar cells and is important in the development of thinner wafer technology.
  1. Frantzis L, Jones E, Lee C, Wood M, Wormser P, in proceedings of the 16th European Photovoltaic Solar Energy conference (Glasgow, UK, 2000) p. 2100. (2000)
  2. Powell DM, Winkler MT, Choi HJ, Simmons CB, Needleman DB, Buonassisi T, Energ. Environ. Sci., 5, 5874 (2012)
  3. Tool CJJ, Burgers AR, Manshanden P, Weeber AW, Straaten BHM, Prog. Photovoltaics, 10(4), 279 (2002)
  4. Wang A, Zhao J, Wenham SR, Green MA, Prog. Photovoltaics, 4(1), 55 (1996)
  5. Willeke GP, Sol. Energy Mater. Sol. Cells, 72(1-4), 191 (2002)
  6. Kim S, Sridharan S, Khadilkar C, Shaikh A, in proceedings of 31th IEEE Photovoltaic Specialists Conference (Orlando, USA, Jan 2005) p. 1100. (2005)
  7. Schneider A, Gerhards C, Fath P, Bucher E, Young RJS, Raby JA, Carroll AF, in Proceedings of 29th IEEE Photovoltaic Specialists Conference (New Orleans, USA, May 2002) p. 336. (2002)
  8. Hilali MM, Gee JM, Hacke P, Sol. Energy Mater. Sol. Cells, 91(13), 1228 (2007)
  9. Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, Nakano S, Hanafusa H, Kuwano Y, Jpn. J. Appl. Phys., 31, 3518 (1992)
  10. Tanaka M, Okamoto S, Tsuge S, Kiyawa S, in proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 1, 955 (2003). (2003)
  11. Matsumoto Y, Hirata G, Takakura H, Okamoto H, Hamakawa Y, J. Appl. Phys., 67, 6538 (1990)
  12. Munoz D, Carreras P, Escarre J, Ibarz D, de Nicolas SM, Voz C, Asensi JM, Bertomeu J, Thin Solid Films, 517(12), 3578 (2009)
  13. Maruyama E, Terakawa A, Taguchi M, Yoshimine Y, Ide D, Baba T, Shima M, Sakata H, Tanaka M, in proceedings of 4th World Conference on Photovoltaic Energy Conversion, 2, 1455 (2006). (2006)
  14. Mishima T, Taguchi M, Sakata H, Maruyama E, Sol. Energy Mater. Sol. Cells, 95(1), 18 (2011)
  15. Tohoda S, Fujishima D, Yano A, Ogane A, Matsuyama K, Nakamura Y, Tokuoka N, Kanno H, Kinoshita T, Sakata H, Taguchi M, Maruyama E, J. Non-Cryst. Solids., 358(17), 2219 (2012)
  16. Inoue H, Tsunomura Y, Fujishima D, Yano A, Taira S, Ishikawa Y, Nishiwaki T, Nakashima T, Asaumi T, Taguchi M, Sakata H, Maruyama E, in proceeding of MRS Fall Meeting, 1210, 1210-Q07-01 (2009). (2009)
  17. Green MA, Solarcells: Operating Principles, Technology and System Applications, p. 81-82, University of New South Wales, Kensington, UK (1998). (1998)
  18. Maki K, Fujishima D, Inoue H, Tsunomura Y, Asaumi T, Taira S, Kinoshita T, Taguchi M, Sakata H, Kanno H, Maruyama E, in proceedings of 37th IEEE Photovoltaic Specialists Conference (Seattle, USA, June 2011) p. 57 (2011)
  19. Song JY, Jeong DY, Kim CS, Park SH, Cho JS, Song J, Wang JS, Lee JC, Korean J. Mater. Res., 20(4), 210 (2010)
  20. Sinton RA, Cuevas A, Appl. Phys. Lett., 69(17), 2510 (1996)
  21. Martin I, Vetter M, Orpella A, Puigdollers J, Cuevas A, Alcubilla R, Appl. Phys. Lett., 79, 2199 (2001)
  22. Bowden S, Sinton RA, J. Appl. Phys., 102, 124501 (2007)
  23. Ji KS, Choi J, Choi WS, Lee HM, Kim D, in proceedings of 37th IEEE Photovoltaic Specialists Conference (Honolulu, USA, June 2010) p. 3190. (2010)
  24. Pierz K, Fuhs W, Mell H, J. Non-Cryst. Solids., 114, 651 (1989)
  25. De Wolf S, Kondo M, Appl. Phys. Lett., 91, 112109 (2007)
  26. Kerr MJ, Cuevas A, Semicond. Sci. Technol., 17, 35 (2002)
  27. Verlaan V, Werf CHM, Houweling ZS, Romijn IG, Weeber AW, Dekkers HFW, Goldbach HD, Schropp REI, Prog. Photovoltaics, 15, 563 (2007)
  28. Schuttauf JWA, Werf KHM, Kielen IM, Sark WGJH, Rath JK, Schropp REI, Appl. Phys. Lett., 98, 153514 (2011)
  29. De Wolf S, Olibet S, Ballif C, Appl. Phys. Lett., 93, 032101 (2008)
  30. Hinken D, Bothe K, Ramspeck K, Herlufsen S, Brendel R, in proceedings of the 24th European PhotovoltaicSolar Energy Conference (Hamburg, Germany, September2009) p. 1082. (2009)
  31. Ma X, Liu Z, Liao H, Li J, in proceedings of Power and Energy Engineering Conference (APPEEC, Chengdu,March 2010) p. 1. (2010)