화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.22, No.9, 489-493, September, 2012
Tb3+ 이온이 첨가된 K2BaW2O8 형광체의 합성 및 형광특성
Synthesis and Luminescence Properties of Tb3+-Doped K2BaW2O8 Phosphors
E-mail:
Green phosphors K2BaW2O8:Tb3+(1.0 mol%) were synthesized by solid state reaction method. Differential thermal analysis was applied to trace the reaction processes. Three endothermic values of 95, 706, and 1055oC correspond to the loss of absorbed water, the release of carbon dioxide, and the beginning of the melting point, respectively. The phase purity of the powders was examined using powder X-ray diffraction(XRD). Two strong excitation bands in the wavelength region of 200- 310 nm were found to be due to the WO4 2. exciton transition and the 4f-5d transition of Tb3+ in K2BaW2O8. The excitation spectrum presents several lines in the range of 310-380 nm; these are assigned to the 4f-4f transitions of the Tb3+ ion. The strong emission line at around 550 nm, due to the 5D4→ 7F5 transition, is observed together with weak lines of the 5D4→ 7FJ(J = 3, 4, and 6) transitions. A broad emission band peaking at 530 nm is observed at 10 K, while it disappears at room temperature. The decay times of Tb3+ 5D4→ 7F5 emission are estimated to be 4.8 and 1.4 ms, respectively, at 10 and 295 K; those of the WO4 2. exciton emissions are 22 and 0.92 μs at 10 and 200 K, respectively.
  1. Nakamura S, Fasol G, Pearton SJ, The Blue Laser Diode: The Complete Story, p. 7, Springer Verlag, NY, USA. (2000)
  2. Nakamura S, MRS Bull., 22, 29 (1997)
  3. Liu YF, Yang ZP, Yu QM, J. Alloy. Comp., 509, L199 (2011)
  4. Zhang XM, Li WL, Jang KH, Seo HJ, Curr. Appl. Phys., 12(1), 299 (2012)
  5. Jang KH, Koo JH, Sae Mulli, 62, 928 (2012)
  6. Wu Y, Ding D, Pan S, Yang F, Ren G, J. Alloy. Comp., 509, 7186 (2011)
  7. Li Q, Huang J, Chen D, J. Alloy. Comp., 509, 1007 (2011)
  8. Prashantha SC, Lakshminarasappa BN, Nagabhushana BM, J. Alloy. Comp., 509, 10185 (2011)
  9. Jang KH, Khaidukov NM, Tuyen VP, Kim SI, Yu YM, Seo HJ, J. Alloy. Comp., 536, 47 (2012)
  10. Moon YM, Choi S, Jung HK, Lim SH, Korean J. Mater. Res., 18(10), 511 (2008)
  11. Seo JH, Choi S, Nahm S, Jung HK, Korean J. Mater. Res., 22(2), 103 (2012)
  12. Liao J, Qiu B, Lai H, J. Lumin., 129, 668 (2009)
  13. Ju Z, Wei R, Gao X, Liu W, Pang C, Opt. Mater., 33, 909 (2011)
  14. Wen FS, Zhao X, Huo H, Chen JS, Shu-Lin E, Zhang JH, Mater. Lett., 55, 152 (2002)
  15. Mai M, Feldmann C, J. Mater. Sci., 47(3), 1427 (2012)
  16. Xiao Q, Zhou Q, Li M, Lumin., 130, 1092 (2010)
  17. Treadaway MJ, Powell RC, J. Chem. Phys., 61, 4003 (1974)
  18. Grobelna B, Lipowska B, Klonkowski AM, J. Alloy. Comp., 419, 191 (2006)
  19. Cho S, Cho SW, Korean J. Mater. Res., 22(5), 215 (2012)
  20. Zhang Q, Meng Q, Tian Y, Feng X, Sun J, Lu S, J. Rare Earths, 29, 815 (2011)
  21. Wei Q, Chen D, Optic. Laser Tech., 41, 783 (2009)
  22. Huang YL, Seo HJ, J. Electrochem. Soc., 158(7), J215 (2011)
  23. Qin C, Huang Y, Seo HJ, J. Alloy. Comp., 534, 86 (2012)
  24. Akhmedova P, Gamataeva BY, Gasanaliev AM, Russ. J. Inor. Chem., 54, 779 (2009)
  25. Gasanaliev AM, Akhmedova PA, Gamataeva BY, Russ. J. Inor. Chem., 57, 274 (2012)
  26. Gasanaliev AM, Minkhadzhev GM, Gamataeva BY, Russ. J. Inor. Chem., 53, 1325 (2008)
  27. Gasanaliev AM, Minkhadzhev GM, Gamataeva BY, Russ. J. Inor. Chem., 52, 621 (2007)
  28. Zhuravlev VD, Velikodnyi AP, Vinogradova-Zhabrova AS, Tyutyunnik AP, Zubkov VG, Russ. J. Inor. Chem., 53, 1632 (2008)
  29. Shannon RD, Acta Crystallogr. A, 32, 751 (1976)
  30. Hoshina T, Luminescence of Rare Earth Ions, p. 12, Sony Research Center Rep., Japan (1983) (in Japanese). (1983)
  31. Carnall WT, Fields PR, Rajnak K, J. Chem. Phys., 49, 4447 (1968)