Korean Journal of Materials Research, Vol.22, No.7, 352-357, July, 2012
Synthesis and Photocatalytic Properties of SnO2-Mixed and Sn-Doped TiO2 Nanoparticles
E-mail:
SnO2-mixed and Sn-doped TiO2 nanoparticles were synthesized via a hydrothermal process. SnO2-mixed TiO2 nanoparticles prepared in a neutral condition consisted of anatase TiO2 nanoparticles(diamond shape, ~25 nm) and cassiterite SnO2 nanoparticles(spherical shape, ~10 nm). On the other hand, Sn-doped TiO2 nanoparticles obtained under a high acidic condition showed a crystalline phase corresponding to rutile TiO2. As the Sn content increased, the particle shape changed from rod-like(d~40 nm, l~200 nm) to spherical(18 nm) with a decrease in the particle size. The peak shift in the XRD results and a change of the c-axis lattice parameter with the Sn content demonstrate that the TiO2 in the rutile phase was doped with Sn. The photocatalytic activity of the SnO2-mixed TiO2 nanoparticles dramatically increased and then decreased when the SnO2 content exceeded 4%. The increased photocatalytic activity is mainly attributed to the improved charge separation of the TiO2 nanoparticles with the SnO2. In the case of Sn-doped TiO2 nanoparticles, the photocatalytic activity increased slightly with the Sn content due most likely to the larger energy bandgap caused by Sn-doping and the decrease in the particle size. The SnO2- mixed TiO2 nanoparticles generally exhibited higher photocatalytic activity than the Sn-doped TiO2 nanoparticles. This was caused by the phase difference of TiO2.
- Gur I, Science, 310(5754), 1618 (2005)
- Ito S, Murakami TN, Comte P, Liska P, Gratzel C, Nazeeruddin MK, Gratzel M, Thin Solid Films, 516(14), 4613 (2008)
- Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y, Nano Letters, 8(11), 3948 (2008)
- Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK, Nano Letters, 10(10), 3852 (2010)
- Jo SH, Muralidharan P, Kim DK, Electrochem. Comm., 11(11), 2085 (2009)
- Lee SJ, Kim DS, Muralidharan P, Jo SH, Kim DK, J. Power Sources, 196(6), 3095 (2011)
- Zhang K, Meng ZD, Oh WC, Korean J. Mater. Res., 20(3), 117 (2010)
- Cho CH, Han MH, Kim DH, Kim DK, Mater. Chem. Phys., 92(1), 104 (2005)
- Cho CH, Kim DK, Kim DH, J. Am. Ceram. Soc., 86(7), 1138 (2003)
- Lee JS, You KH, Park CB, Adv. Mater., 24(8), 1084 (2012)
- Cho SH, Lee SW, Korean J. Mater. Res., 21(2), 83 (2011)
- Im JS, Lee SK, Lee YS, Appl. Surf. Sci., 257(6), 2164 (2011)
- Spoerke ED, Lloyd MT, McCready EM, Olson DC, Lee YJ, Hsu JWP, Appl. Phys. Lett., 95, 213506 (2009)
- Nozik AJ, Appl. Phys. Lett., 30(11), 567 (1977)
- Gopidas KR, Bohorquez M, Kamat PV, J. Phys. Chem., 94(16), 6435 (1990)
- Hotchandani S, Kamat PV, J. Phys. Chem., 96(16), 6834 (1992)
- Kamat PV, Patrick B, J. Phys. Chem., 96(16), 6829 (1992)
- Rabani J, J. Phys. Chem., 93(22), 7707 (1989)
- Spanhel L, Weller H, Henglein A, J. Am. Chem. Soc., 109(22), 6632 (1987)
- Li J, Wang D, Liu H, Zhu Z, Mater. Manuf. Process., 27(6), 631 (2012)
- Al-Salim NI, Bagshaw SA, Bittar A, Kemmitt T, McQuillan AJ, Mills AM, Ryan MJ, J. Mater. Chem., 10(10), 2358 (2000)
- Denton AR, Ashcroft NW, Phys. Rev., 43(6), 3161 (1991)
- Cheng H, Ma J, Zhao Z, Qi L, Chem. Mater., 7(4), 663 (1995)
- Su R, Bechstein R, So L, Vang RT, Sillassen M, Esbjornsson B, Palmqvist A, Besenbacher F, J. Phys. Chem. C, 115(49), 24287 (2011)