화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.22, No.7, 352-357, July, 2012
Synthesis and Photocatalytic Properties of SnO2-Mixed and Sn-Doped TiO2 Nanoparticles
E-mail:
SnO2-mixed and Sn-doped TiO2 nanoparticles were synthesized via a hydrothermal process. SnO2-mixed TiO2 nanoparticles prepared in a neutral condition consisted of anatase TiO2 nanoparticles(diamond shape, ~25 nm) and cassiterite SnO2 nanoparticles(spherical shape, ~10 nm). On the other hand, Sn-doped TiO2 nanoparticles obtained under a high acidic condition showed a crystalline phase corresponding to rutile TiO2. As the Sn content increased, the particle shape changed from rod-like(d~40 nm, l~200 nm) to spherical(18 nm) with a decrease in the particle size. The peak shift in the XRD results and a change of the c-axis lattice parameter with the Sn content demonstrate that the TiO2 in the rutile phase was doped with Sn. The photocatalytic activity of the SnO2-mixed TiO2 nanoparticles dramatically increased and then decreased when the SnO2 content exceeded 4%. The increased photocatalytic activity is mainly attributed to the improved charge separation of the TiO2 nanoparticles with the SnO2. In the case of Sn-doped TiO2 nanoparticles, the photocatalytic activity increased slightly with the Sn content due most likely to the larger energy bandgap caused by Sn-doping and the decrease in the particle size. The SnO2- mixed TiO2 nanoparticles generally exhibited higher photocatalytic activity than the Sn-doped TiO2 nanoparticles. This was caused by the phase difference of TiO2.
  1. Gur I, Science, 310(5754), 1618 (2005)
  2. Ito S, Murakami TN, Comte P, Liska P, Gratzel C, Nazeeruddin MK, Gratzel M, Thin Solid Films, 516(14), 4613 (2008)
  3. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y, Nano Letters, 8(11), 3948 (2008)
  4. Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK, Nano Letters, 10(10), 3852 (2010)
  5. Jo SH, Muralidharan P, Kim DK, Electrochem. Comm., 11(11), 2085 (2009)
  6. Lee SJ, Kim DS, Muralidharan P, Jo SH, Kim DK, J. Power Sources, 196(6), 3095 (2011)
  7. Zhang K, Meng ZD, Oh WC, Korean J. Mater. Res., 20(3), 117 (2010)
  8. Cho CH, Han MH, Kim DH, Kim DK, Mater. Chem. Phys., 92(1), 104 (2005)
  9. Cho CH, Kim DK, Kim DH, J. Am. Ceram. Soc., 86(7), 1138 (2003)
  10. Lee JS, You KH, Park CB, Adv. Mater., 24(8), 1084 (2012)
  11. Cho SH, Lee SW, Korean J. Mater. Res., 21(2), 83 (2011)
  12. Im JS, Lee SK, Lee YS, Appl. Surf. Sci., 257(6), 2164 (2011)
  13. Spoerke ED, Lloyd MT, McCready EM, Olson DC, Lee YJ, Hsu JWP, Appl. Phys. Lett., 95, 213506 (2009)
  14. Nozik AJ, Appl. Phys. Lett., 30(11), 567 (1977)
  15. Gopidas KR, Bohorquez M, Kamat PV, J. Phys. Chem., 94(16), 6435 (1990)
  16. Hotchandani S, Kamat PV, J. Phys. Chem., 96(16), 6834 (1992)
  17. Kamat PV, Patrick B, J. Phys. Chem., 96(16), 6829 (1992)
  18. Rabani J, J. Phys. Chem., 93(22), 7707 (1989)
  19. Spanhel L, Weller H, Henglein A, J. Am. Chem. Soc., 109(22), 6632 (1987)
  20. Li J, Wang D, Liu H, Zhu Z, Mater. Manuf. Process., 27(6), 631 (2012)
  21. Al-Salim NI, Bagshaw SA, Bittar A, Kemmitt T, McQuillan AJ, Mills AM, Ryan MJ, J. Mater. Chem., 10(10), 2358 (2000)
  22. Denton AR, Ashcroft NW, Phys. Rev., 43(6), 3161 (1991)
  23. Cheng H, Ma J, Zhao Z, Qi L, Chem. Mater., 7(4), 663 (1995)
  24. Su R, Bechstein R, So L, Vang RT, Sillassen M, Esbjornsson B, Palmqvist A, Besenbacher F, J. Phys. Chem. C, 115(49), 24287 (2011)