화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.22, No.2, 91-96, February, 2012
Photocatalytic Performance of ZnS and TiO2 Supported on AC Under Visible Light Irradiation
E-mail:
AC and ZnS modified TiO2 composites (AC/ZnS/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/TiO2 composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/TiO2 composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/TiO2 composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/TiO2 composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.
  1. Lichtin NN, Avudaithai M, Berman E, Grayfer A, Sol. Energy, 56(5), 377 (1996)
  2. Minero C, Pelizzetti E, Malato S, Blanco J, Sol. Energy, 56(5), 411 (1996)
  3. Meng ZD, Zhu L, Choi JG, Chen ML, Oh WC, J. Mater. Chem., 21, 7596 (2011)
  4. Meng ZD, Cho KY, Oh WC, Asian J. Chem., 23, 847 (2011)
  5. Oh WC, Zhang FJ, J. Photo. Sci., 1, 63 (2010)
  6. Ranjit KT, Krishnamoorthy R, Viswanathan B, J. Photochem. Photobiol. Chem., 81, 55 (1994)
  7. Huang T, Lin X, Xing J, Wang W, Shan Z, Huang F, Mater. Sci. Eng. B, 141, 49 (2007)
  8. Porter JF, Li YG, Chan CK, J. Mater. Sci., 34(7), 1523 (1999)
  9. Meng ZD, Zhang K, Oh WC, Korean J. Mater. Res., 20(4), 228 (2010)
  10. Xie W, Li Y, Sun W, Huang J, Xie H, Zhao X, J. Photochem. Photobiol. Chem., 216, 149 (2010)
  11. Fujishima A, Rao TN, Tryk DA, J. Photochem. Photobiol. C Photochem. Rev., 1, 1 (2000)
  12. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  13. Asilturk M, Sayllkan F, Arpac E, J. Photochem. Photobiol. Chem., 203, 64 (2009)
  14. Andersson M, Osterlund L, Ljungstrom S, Palmqvist A, J. Phys. Chem. B, 106(41), 10674 (2002)
  15. Tada H, Hattori A, Tokihisa Y, Imai K, Tohge N, Ito S, J. Phys. Chem. B, 104(19), 4585 (2000)
  16. Meng ZD, Chen ML, Zhang FJ, Zhu L, Choi JG, Oh WC, Asian J. Chem., 23, 2327 (2011)
  17. Mori T, Suzuki J, Fujimoto K, Watanabe M, Hasegawa Y, Appl. Catal. B: Environ., 23(4), 283 (1999)
  18. Wang TM, Wang HY, Xu P, Zhao XC, Liu YL, Chao S, Thin Solid Films, 334(1-2), 103 (1998)
  19. Meng ZD, Oh WC, Ultrason. Sonochem., 18, 757 (2011)
  20. Stengl V, Bakardjieva S, Murafa N, Houskova V, Lang K, Microporous Mesoporous Mater., 110, 370 (2008)
  21. Zhou Z, He D, Xu W, Ren F, Qian Y, Mater. Lett., 61, 4500 (2007)
  22. Zhang L, Yang L, Cryst. Res. Tech., 43, 1022 (2008)
  23. Meng ZD, Choi JG, Park JY, Zhu L, Oh WC, J. Photo. Sci., 2, 27 (2011)
  24. Li Y, Peng S, Jiang F, Lu G, Li S, J. Serb. Chem. Soc., 72, 393 (2007)
  25. Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL, Angew. Chem. Int. Ed., 44, 1269 (2005)
  26. De GC, Roy AM, Bhattacharya SS, Int. J. Hydrogen Energ., 21, 19 (1996)
  27. Roy AM, De GC, J. Photochem. Photobiol. Chem., 157, 87 (2003)
  28. Zhang K, Jing DW, Chen QY, Guo LJ, Int. J. Hydrog. Energy, 35(5), 2048 (2010)
  29. Uzar N, Okur S, Arikan MC, Sensor. Actuator. Phys., 167, 188 (2011)
  30. Torimoto T, Ito S, Kuwabata S, Yoneyama H, Environ. Sci. Tech., 30, 1275 (1996)
  31. Arana I, Dona-Rodriguez JM, Rendon ET, Cabo CGI, Gonzalez-Diaz O, Herrera-Melian JA, Perez-Pena J, Colon G, Navio JA, Appl. Catal. B: Environ., 44(2), 153 (2003)
  32. Zhang XW, Lei LC, J. Hazard. Mater., 153(1-2), 827 (2008)
  33. Han CH, Li ZY, Shen JY, J. Hazard. Mater., 168(1), 215 (2009)
  34. Zhang X, Zhou M, Lei L, Carbon, 43, 1700 (2005)
  35. Chan CC, Chang CC, Hsu WC, Wang SK, Lin J, Chem. Eng. J., 152(2-3), 492 (2009)
  36. Zhang FJ, Chen ML, Zhang K, Oh WC, Bull. Korean Chem. Soc., 31, 133 (2010)
  37. Zhang FJ, Liu J, Chen ML, Oh WC, J. Korean Ceram. Soc., 46, 263 (2009)
  38. Yang J, Bai HZ, Jiang Q, Lian HS, Thin Solid Films, 516(8), 1736 (2008)
  39. Yang XX, Cao CD, Erickson L, Hohn K, Maghirang R, Klabunde K, J. Catal., 260(1), 128 (2008)
  40. Lei M, Zhang YB, Fu XL, Huang YT, Zhang L, Xiao JH, Mater. Lett., 65, 3577 (2011)
  41. Tsuji I, Kato H, Kudo A, Angew. Chem. Int. Ed., 44, 3565 (2005)
  42. Li Y, Chen G, Zhou C, Sun J, Chem. Comm., 15, 2020 (2009)
  43. Kakuta N, Park KH, Finlayson MF, Ueno A, Bard AJ, Campion A, Fox MA, Webber SE, White JM, J. Phys. Chem., 89, 732 (1985)
  44. Meng ZD, Zhu L, Choi JG, Park CY, Oh WC, Nanoscale Res. Lett., 6, 459 (2011)