화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.1, 88-98, January, 2015
열 이미드화 온도에 따른 작용기화 그래핀/폴리이미드 나노복합재료
Functionalized Graphene/Polyimide Nanocomposites under Different Thermal Imidization Temperatures
E-mail:
초록
폴리이미드(PI) 나노복합체 필름 제조에 사용된 작용기화 4-amino-N-hexadecylbenzamide graphene sheets (AHB-GSs)는 graphene oxide 분산액에 4-amino-N-hexadecylbenzamide(AHB)를 반응시켜 합성하였다. AHB-GS의 주사탐침 현미경(atomic force microscope, AFM) 이미지와 모식도를 통해서 AHB-GS의 평균 두께가 약 3.21 nm임을 확인하였다. PI는 4,4'-biphthalic anhydride와 bis(4-aminophenyl)sulfide를 사용하여 합성하였다. PI 나노복합체는 0-10 wt%의 다양한 함량의 AHB-GS를 용액 삽입(solution intercalation) 방법을 사용하여 합성하였고, 이미드화는 각각 250 oC 및 350 oC까지 열 처리하였다. AHB-GS는 대부분 고분자 매트릭스에 잘 분산되었고 약간 뭉친 것도 있었지만 마이크로미터 수준의 입자는 관찰되지 않았다. TEM으로 관찰하였을 때, 평균적으로 입자의 두께는 10 nm 미만이었다. PI 복합체 필름 중 소량의 AHB-GS만으로도 가스 투과도와 전기 전도도는 향상되었지만, 반대로 유리전이 온도와 초기 분해 온도는 AHB-GS의 함량이 10 wt%까지 증가함에 따라 지속적으로 감소되는 경향을 보였다. 전체적으로는, 250 oC까지 이미드화한 PI에 비해 350 oC까지 열처리한 PI 필름이 보다 향상된 특성을 보였다.
4-Amino-N-hexadecylbenzamide-graphene sheets (AHB-GSs), used in the preparation of the polyimide (PI) nanocomposite films, were synthesized by mixing a dispersion of graphite oxide with a solution of the ammonium salt of AHB. The atomic force microscope image of functionalized-GS on mica and a profile plot revealed the average thickness of AHB-GS to be ~3.21 nm. PI films were synthesized by reacting 4,4'-biphthalic anhydride and bis(4-aminophenyl) sulfide. PI nanocomposite films containing various contents of AHB-GS over the range of 0-10 wt% were synthesized using the solution intercalation method. The PI nanocomposite films under different thermal imidization temperatures, 250 and 350 oC, were examined. The graphenes, for the most part, were well dispersed in the polymer matrix despite some agglomeration. However, micrometer-scale particles were not detected. The average thickness of the particles was <10 nm, as revealed from the transmission electron microscope images. Only a small amount of AHB-GS was required to improve the gas barrier, and electrical conductivity. In contrast, the glass transition and initial decomposition temperatures of the PI hybrid films continued to decrease with increasing content of AHB-GS up to 10 wt%. In general, the properties of the PI hybrid films heat treated at 350 oC were better than those of films heat treated at 250 oC.
  1. Wang HW, Dong RX, Chu HC, Chang KC, Lee WC, Mater. Chem. Phys., 94(1), 42 (2005)
  2. Wang XL, Li YF, Gong CL, Ma T, Yang FC, J. Fluor. Chem., 129, 56 (2008)
  3. Ge Z, Fan L, Yang S, Eur. Polym. J., 44, 1252 (2008)
  4. Lee EY, Hwang T, Nam JD, Polym.(Korea), 36(4), 448 (2012)
  5. Min U, Chang JH, Polym.(Korea), 34(6), 495 (2010)
  6. Hasegawa M, Horiuchi M, Wada Y, High Perform. Polym., 19, 175 (2007)
  7. Liu JG, Zhao XJ, Fan HSL, Yang SY, High Perform. Polym., 18, 851 (2006)
  8. Lee C, Wei X, Kysar JW, Hone J, Science, 321, 385 (2008)
  9. Novoselov KS, Science, 306, 666 (2004)
  10. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
  11. Stankovich S, Kidin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, Nature, 442, 292 (2006)
  12. Zhang Y, Tan JW, Stormer KL, Kim P, Nature, 438, 201 (2005)
  13. Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B, Polym. Adv. Technol., 24, 916 (2013)
  14. Kumar M, Chung JS, Kong BS, Kim EJ, Hur SH, Mater. Lett., 106, 319 (2013)
  15. Geim AK, Science, 324, 1530 (2009)
  16. Losurdo M, Giangregorio MM, Capezzuto P, Bruno G, Phys. Chem. Chem. Phys., 13, 20836 (2011)
  17. Reina A, Jia X, Ho J, Nezich D, Bulovic HSV, MS Dresselhaus, Kong J, Nano Lett., 9, 30 (2009)
  18. Mattausch A, Pankratov O, Phys. Stat. Sol. (b), 245, 1425 (2008)
  19. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA, J. Phys. Chem. B, 110(17), 8535 (2006)
  20. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS, Nano Lett., 9, 1593 (2009)
  21. Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R, Carbon, 48, 630 (2010)
  22. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS, Polymer, 52(1), 5 (2011)
  23. Raghu AV, Lee YR, Jeong HM, Macromol. Chem. Phys., 209, 2487 (2008)
  24. Gao C, Vo CD, Jin YZ, Li WW, Armes SP, Macromolecules, 38(21), 8634 (2005)
  25. Cai D, Song M, J. Mater. Chem., 20, 7906 (2010)
  26. Park OK, Hwang JY, Goh M, Lee JH, Ku BC, You NH, Macromolecules, 46(9), 3505 (2013)
  27. Cai DY, Song M, J. Mater. Chem., 20, 7906 (2010)
  28. Hummers W, Offeman R, J. Am. Chem. Soc., 80, 1339 (1958)
  29. Pavia DL, Lampman GM, Kriz GS, Introduction to spectroscopy, Hartcourt, Washington (2001)
  30. Heo C, Chang JH, Solid State Sci., 24, 6 (2013)
  31. Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 229 (2010)
  32. McAllister MJ, Lim JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Alonso MH, Milius DL, Car R, Prud’homme RK, Aksay IA, Chem. Mater., 19, 4396 (2007)
  33. Stankovich S, Dikin DA, Piner RD, Akohlhaas K, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
  34. Yang SY, Park CE, Jung MS, Polymer, 44(11), 3243 (2003)
  35. Heo C, Chang JH, Polym.(Korea), 37(2), 218 (2013)
  36. Jarus D, Hiltner A, Baer E, Polymer, 43(8), 2401 (2002)
  37. Matsui S, Sato H, Nakagawa T, J. Membr. Sci., 141(1), 31 (1998)
  38. Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CM, ACS Appl. Mater. Interfaces, 2, 3092 (2010)
  39. Wei ZQ, Wang DB, Kim S, Kim SY, Hu YK, Yakes MK, Laracuente AR, Dai ZT, Marder SR, Berger C, King WP, de Heer WA, Sheehan PE, Riedo E, Science, 328(5984), 1373 (2010)
  40. Kang HS, Kulkarni A, Stankovich SS, Ruoff RS, Baik SH, Carbon, 47, 1520 (2009)