화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.1, 180-184, January, 2015
폴리프로필렌으로 그래프트된 그래핀 옥사이드 제조 및 특성 분석
Synthesis and Characterization of Polypropylene-grafted Graphene Oxide via “Grafting-to” Method
E-mail:,
초록
폴리프로필렌(PP)으로 그래프트된 그래핀 옥사이드(PP-grafted GO)는 2-bromoisobutyryl 그룹을 가진 GO (GO-Br)와 하이드록시 그룹을 가진 PP(PP-OH)와의 “grafting-to” 화학반응을 통하여 제조하였다. GO-Br은 GO와 2-bromoisobutyryl bromide를 염기촉매 하에서 반응시켜 얻을 수 있었고, PP-OH는 maleic anhydride가 그래프트된 PP(PP-MAH)와 ethanolamine과 반응하여 제조하였다. 제조된 PP-grafted GO는 PP-OH에 비하여 녹는점이 높은 온도로 이동하였고, 열적 안정성은 GO와 PP-OH에 비하여 우수한 것을 확인하였다. 이러한 결과는 그래프트된 PP 고분자가 GO의 열적 안정성을 향상시키는 것으로 판단된다. 또한 PP-grafted GO의 표면은 GO-Br에 비하여 거칠기가 증가되는 것을 확인하여 PP가 GO 표면에 화학적으로 결합한 것을 알 수 있었다. 제조된 PP-grafted GO의 분석은 FTIR, Raman, DSC, TGA, SEM과 같은 다양한 분석장비를 이용하여 수행하였다.
PP-grafted GO was prepared by the reaction of graphene oxide (GO) containing 2-bromoisobuyryl groups and polypropylene (PP) having hydroxyl groups (PP-OH) via a “grafting-to” method. GO-Br was synthesized by the reaction of GO and 2-bromoisobutyryl bromide under a basic condition. PP-MAH was reacted with ethanolamine to produce PPOH. The melting temperature of PP-grafted GO was shifted to the higher temperature than that of PP-OH. Also, the thermal stability of PP-grafted GO was increased as compared to PP-OH and GO. These results demonstrated that the grafted coating polymer PP was effective for enhancing the thermal stability of GO. The higher surface roughness of PP-grafted GO was resulted from the chemical attachment of PP on the surface of GO. The characterization of PP-grafted GO was conducted from Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM).
  1. Lee Y, Bae S, Jang H, Jang S, Zhu SE, Kim SH, Song YI, Hong BH, Ahn JH, Nano Lett., 10, 490 (2010)
  2. Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ, ACS Nano, 4, 1963 (2010)
  3. Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ, J. Am. Chem. Soc., 132(40), 13978 (2010)
  4. Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
  5. Kuila T, Khanra P, Mishra AK, Kim NH, Lee JH, Polym Test., 31(3), 282 (2012)
  6. Liu Z, Liu J, Cui L, Wang R, Luo X, Barrow CJ, Yang W, Carbon, 51, 148 (2013)
  7. Kim KM, Chujo Y, J. Mater. Chem., 13, 1384 (2003)
  8. Kim KM, Chujo Y, J. Polym. Sci. A: Polym. Chem., 39(22), 4035 (2001)
  9. Luecke S, Stoppek-Langner K, Appl. Aurf. Sci., 144, 713 (1999)
  10. Jeon JH, Lim JH, Kim KM, Polymer, 50(19), 4488 (2009)
  11. Lim JH, Ko YW, Kim KY, Kim KM, Polym.(Korea), 36(5), 656 (2012)
  12. Jeon JH, Lee SH, Lim JH, Kim KM, J. Appl. Polym. Sci., 124(4), 3064 (2012)
  13. Lee SH, Lim JH, Kim KM, J. Appl. Polym. Sci., 124(5), 3792 (2012)
  14. Lee JH, Nam JH, Lim JH, Moon SC, Kim KY, Kim KM, Compos. Interfaces, 9, 583 (2013)
  15. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806 (2010)
  16. Lee SH, Dreyer DR, An JH, Velamakanni A, Piner RD, Park S, Zhu YW, Kim SO, Bielawski CW, Ruoff RS, Macromol. Rapid Commun., 31(3), 281 (2010)
  17. Wang DR, Zhang XM, Zha JW, Zhao J, Dang ZM, Hu GH, Polymer, 54(7), 1916 (2013)
  18. Wu N, She X, Yang D, Wu X, Su F, Chen Y, J. Mater. Chem., 22, 17254 (2012)
  19. Yuan BH, Bao CL, Song L, Hong NN, Liew KM, Hu Y, Chem. Eng. J., 237, 411 (2014)