Korean Journal of Materials Research, Vol.21, No.9, 497-501, September, 2011
RF 마그네트론 스퍼터링법으로 증착된 CdS 박막의 CdCl2 열처리 효과
Effects of CdCl2 Heat Treatment on the Qualities of CdS Thin Films Deposited by RF Magnetron Sputtering Technique
E-mail:
The CdS thin film used as a window layer in the CdTe thin film solar cell transports photo-generated electrons to the front contact and forms a p-n junction with the CdTe layer. This is why the electrical, optical, and surface properties of the CdS thin film influence the efficiency of the CdTe thin film solar cell. When CdTe thin film solar cells are fabricated, a heat treatment is done to improve the qualities of the CdS thin films. Of the many types of heat treatments, the CdCl2 heat treatment is most widely used because the grain size in CdS thin films increases and interdiffusion between the CdS and the CdTe layer is prevented by the heat treatment. To investigate the changes in the electrical, optical, and surface properties and the crystallinity of the CdS thin films due to heat treatment, CdS thin films were deposited on FTO/glass substrates by the rf magnetron sputtering technique, and then a CdCl2 heat treatment was carried out. After the CdCl2 heat treatment, the clustershaped grains in the CdS thin film increased in size and their boundaries became faint. XRD results show that the crystallinity improved and the crystalline size increased from 15 to 42 nm. The resistivity of the CdS single layer decreased from 3.87 to 0.26 Ωcm, and the transmittance in the visible region increased from 64% to 74%.
- Ringel SA, Smith AW, MacDougal MH, Rohatgi A, J. Appl. Phys., 70(2), 881 (1991)
- Mitchell K, Fahrenbruch AL, Bube RH, J. Appl. Phycol., 48, 829 (1977)
- Komin V, Tetali B, Viswanathan V, Yu S, Morel DL, Ferekides CS, Thin Solid Films, 431-432, 143 (2003)
- Tsuji M, Aramoto T, Ohyama H, Hibino T, Omura K, J. Cryst. Growth, 214-215, 1142 (2000)
- Mathew S, Mukerjee PS, Vijayakumar KP, Thin Solid Films, 254(1-2), 278 (1995)
- Wu XZ, Sol. Energy, 77(6), 803 (2004)
- Senthil K, Mangalaraj D, Narayandass SK, Adachi S, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 78, 53 (2000)
- de la Plaza IM, Gonzalez-Diaz G, Sanchez-Quesada F, Rodriguez-Vidal M, Thin Solid Films, 120, 31 (1984)
- Compaan AD, Gupta A, Drayton J, Lee SH, Wang S, Phys. Status Solidi B, 241, 779 (2004)
- El Maliki H, Bernede JC, Marsillac S, Pinel J, Castel X, Pouzet J, Appl. Surf. Sci., 205(1-4), 65 (2003)
- Son CS, Korean J. Mater. Res., 21(4), 202 (2011)
- Lee JH, Lee DJ, Thin Solid Films, 515(15), 6055 (2007)
- Bai Z, Wan L, Hou Z, Wang D, Phys. Status Solidi C, 8, 628 (2011)
- Lee J, Appl. Surf. Sci., 252(5), 1398 (2005)
- Escosura L, Garcia-Camarero E, Arjona F, Rueda F, Sol. Cell, 11, 211 (1984)
- Patterson AL, Phys. Rev., 56(10), 978 (1939)
- Akintunde JA, J. Mater. Sci. -Mater. Med., 11, 503 (2000)
- Altosaar M, Ernits K, Krustok J, Varema T, Raudoja J, Mellikov E, Thin Solid Films, 480-481, 147 (2005)
- Vigil-Galan O, Vidal-Larramendi J, Escamilla-Esquivel A, Contreras-Puente G, Cruz-Gandarilla F, Arriaga-Mejia G, Chavarria-Castaneda M, Tufino-Velazq M, Phys. Status Solidi, 203, 2018 (2006)
- Kwon S, Yi J, Yoon S, Lee JS, Kim D, Curr. Appl. Phys., 9(6), 1310 (2009)
- Sharma RK, Jain K, Rastogi AC, Curr. Appl. Phys., 3(2-3), 199 (2003)
- Carballeda-Galicia DM, Castanedo-Perez R, Jimenez-Sandoval O, Jimenez-Sandoval S, Torres-Delgado G, Zuniga-Romero CI, Thin Solid Films, 371(1-2), 105 (2000)