화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.21, No.7, 377-383, July, 2011
La2NiO4 + δ세라믹스의 유전이완 및 전기전도특성
Dielectric Relaxation and Electrical Conduction Properties of La2NiO4+δ Ceramics
E-mail:
Thermoelectric power, dc conductivity, and the dielectric relaxation properties of La2NiO4.03 are reported in the temperature range of 77 K - 300 K and in a frequency range of 20 Hz - 1 MHz. Thermoelectric power was positive below 300K. The measured thermoelectric power of La2NiO4.03 decreased linearly with temperature. The dc conductivity showed a temperature variation consistent with the variable range hopping mechanism at low temperatures and the adiabatic polaron hopping mechanism at high temperatures. The low temperature dc conductivity mechanism in La2NiO4.03 was analyzed using Mott’s approach. The temperature dependence of thermoelectric power and dc conductivity suggests that the charge carriers responsible for conduction are strongly localized. The relaxation mechanism has been discussed in the frame of the electric modulus and loss spectra. The scaling behavior of the modulus and loss tangent suggests that the relaxation describes the same mechanism at various temperatures. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with activation energy of ~ 0.106eV. At low temperature, variable range hopping and large dielectric relaxation behavior for La2NiO4.03 are consistent with the polaronic nature of the charge carriers.
  1. Grenier JC, Lagueyte N, Wattiaux A, Doumerc JP, Dordor P, Etourneau J, Pouchard M, Goodenough JB, Zhou S, Phys. C Supercond., 202, 209 (1992)
  2. Rice DE, Buttrey DJ, J. Solid State Chem., 105, 197 (1993)
  3. Tamura H, Hayashi A, Ueda Y, Phys. C Supercond., 216, 83 (1993)
  4. Iguchi E, Satoh H, Nakatsugawa H, Munakata F, Phys. B Condens. Matter, 270, 332 (1999)
  5. Demourgues A, Dordo Pr, Doumerc JP, Grenier JC, Marquestaut E, Pouchard M, Villesuzanne A, Wattiaux A, J. Solid State Chem., 124, 199 (1996)
  6. Rao CNR, Buttrey DJ, Otsuka N, Ganguly P, Harrison HR, Sandberg CJ, Honig JM, J. Solid State Chem., 51, 266 (1984)
  7. Zaanen J, Sawatzky GA, Allen JW, Phys. Rev. Lett., 55, 418 (1985)
  8. Singh KK, Ganguly P, Goodenough JB, J. Solid State Chem., 52, 254 (1984)
  9. Sayer M, Odier P, J. Solid State Chem., 67, 26 (1987)
  10. Johnston DC, Stokes JP, Goshorn DP, Lewandowski JT, Phys. Rev. B, 36, 4007 (1987)
  11. Strangfeld T, Westerholt K, Bach H, Phys. C Supercond., 183, 1 (1991)
  12. Katsufuji T, Tanabe T, Ishikawa T, Fukuda Y, Arima T, Tokura Y, Phys. Rev. B, 54, R14230 (1996)
  13. Bassat JM, Loup JP, Odier P, J. Phys. Condens. Matter, 6, 8285 (1994)
  14. Sayer M, Gehlig R, Salje E, Phil. Mag. B, 47, 229 (1983)
  15. Mansingh A, Reyes JM, Sayer M, J. Non - Cryst. Solids, 7, 12 (1972)
  16. Sidek HAA, Collier IT, Hampton RN, Saunders GA, Bridge B, Phil. Mag. B., 59, 221 (1989)
  17. Seeger A, Lunkenheimer P, Hemberger J, Mukhin AA, Ivanov VY, Balbasov AM, Loidl A, J. Phys. Condens. Matter, 11, 3273 (1999)
  18. Jhans H, Kim D, Rasmussen RJ, Honig JM, Phys. Rev. B, 54, 11224 (1996)
  19. Jung WH, Sohn JH, Lee JH, Sohn JH, Park MS, Cho SH, J. Am. Ceram. Soc., 83(4), 797 (2000)
  20. Ang C, Yu Z, Jing Z, Lunkenheimer P, Loidl A, Phys. Rev. B Condens. Matter, 61, 3922 (2000)
  21. Millis AI, Phys. Rev. B, 53, 8434 (1996)
  22. Millis AI, Phys. Rev. B, 55, 6405 (1997)
  23. Jaime M, Salamon MB, Rubinstein M, Treece RE, Horwitz JS, Chrisey DB, Phys. Rev. B, 54, 11914 (1996)
  24. Pal S, Banerjee A, Rozenberg E, Chaudhuri BK, J. Appl. Phys., 89, 4955 (2001)
  25. Jakob G, Westerburg W, Martin F, Adrian H, Phys. Rev. B Condens. Matter, 58, 14966 (1998)
  26. Quenneville E, Meunier M, Yelon A, Morin F, J. Appl. Phys., 90(4), 1891 (2001)
  27. Jung WH, Korean J. Mater. Res., 18(4), 175 (2008)
  28. Hundley MF, Neumeier JJ, Phys. Rev B., 55(17), 11511 (1997)
  29. Palstra TTM, Ramirez AP, Cheong SW, Zegarski BR, Schiffer P, Zaanen J, Phys. Rev. B., 56, 5104 (1997)
  30. Coey JMD, Viret M, Von Molnar S, Adv. Phys., 48, 167 (1999)
  31. Mandal P, Phys. Rev. B Condens. Matter, 61, 14675 (2000)
  32. Mott NF, Adv. Phys., 39, 55 (1990)
  33. Mott NF, J. Phys. Condens. Matter, 5, 3487 (1993)
  34. Jung WH, Korean J. Mater. Res., 19(4), 186 (2009)
  35. Jung WH, Mater. Lett., 61, 2274 (2007)
  36. Karmakar A, Majumdar S, Giri S, Phys. Rev. B Condens. Matter, 79, 94406 (2009)
  37. Macedo PB, Moynihan CT, Bose R, Phys. Chem. Glasses, 13, 171 (1972)
  38. Dutta A, Sinha TP, J. Alloy. Comp., 509, 1705 (2011)
  39. Bajpai PK, Singh KN, Phys. B Condens. Matter, 406, 1226 (2011)
  40. Liu JJ, Duan CG, Yin WG, Mei WN, Smith RW, Hardy JR, J. Chem. Phys., 119(5), 2812 (2003)
  41. Jung WH, J. Phys. Condens. Matter, 18, 6691 (2006)
  42. Iguchi E, Ueda K, Jung WH, Phys. Rev. B, 54, 17431 (1996)
  43. Jung WH, Nakatsugawa H, Iguchi E, J. Solid State Chem., 133, 466 (1997)