화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.21, No.5, 277-282, May, 2011
상온 진공 분말 분사법에 의한 NiMn2O4계 NTC Thermistor 후막제작 및 특성평가
Fabrication and Characterization of NiMn2O4 NTC Thermistor Thick Films by Aerosol Deposition
E-mail:,
Negative temperature coefficient (NTC) materials have been widely studied for industrial applications, such as sensors and temperature compensation devices. NTC thermistor thick films of Ni1+xMn2-xO4+δ (x = 0.05, 0, .0.05) were fabricated on a glass substrate using the aerosol deposition method at room temperature. Resistance verse temperature (R-T) characteristics of the as-deposited films showed that the B constant ranged from 3900 to 4200 K between 25oC and 85oC without heat treatment. When the film was annealed at 600oC 1h, the resistivity of the film gradually decreased due to crystallization and grain growth. The resistivity and the activation energy of films annealed at 600oC for 1 h were 5.203, 5.95, and 4.772 KΩ·cm and 351, 326, and 299 meV for Ni0.95Mn2.05O4+δ, NiMn2O4, and Ni1.05Mn1.95O4+δ, respectively. The annealing process induced insulating Mn2O3 in the Ni deficient Ni0.95Mn2.05O4+δ composition resulting in large resistivity and activation energy. Meanwhile, excess Ni in Ni1.05Mn1.95O4+δ suppressed the abnormal grain growth and changed Mn3+ to Mn4+, giving lower resistivity and activation energy.
  1. Jagtap S, Rane S, Gosavi S, Amalnerkar D, J. Eur. Ceram. Soc., 28, 2501 (2008)
  2. Kanade SA, Puri V, Mater. Lett., 60, 1428 (2006)
  3. Jadhav R, Kulkarni D, Puri V, J. Mater. Sci. Mater. Electron., 21(5), 503 (2010)
  4. Park K, Bang D, J. Mater. Sci. Mater. Electron., 14(2), 81 (2003)
  5. Huang J, Hao Y, Lin H, Zhang D, Song J, Zhou D, Mater. Sci. Eng. B, 99, 523 (2003)
  6. Prasanth NP, Varghese JM, Prasad K, Krishnan B, Seema A, Dayas KR, J Mater. Sci. Mater. Electron., 19, 1100 (2008)
  7. Lee M, Yoo M, Sensor. Actuator. Phys., 96, 97 (2002)
  8. Schmidt R, Basu A, Brinkman AW, J. Eur. Ceram. Soc., 24, 1233 (2004)
  9. Yoo M, Lee M, Mater. Trans., 43(4), 1065 (2002)
  10. Csete de Gyorgyfalva GDC, Reaney I, J. Eur. Ceram. Soc., 21, 2145 (2001)
  11. Veres A, Noudem JG, Perez O, Fourrez S, Bailleul G, Solid State Ion., 178(5-6), 423 (2007)
  12. Savic SM, Nikolic MV, Aleksic OS, Slankamenac M, Zivanov M, Nikolic PM, Science of Sintering, 40, 27 (2008)
  13. Schmidt R, Basu A, Brinkman AW, Klusek Z, Datta PK, Appl. Phys. Lett., 86, 073501 (2005)
  14. Yoon JR, Kim JG, Kwon JY, Lee HY, Lee SW, J. KIEEME, 13(6), 472 (2000)
  15. Kshirsagar A, Rane S, Mulik U, Amalnerkar D, Mater. Chem. Phys., 101(2-3), 492 (2007)
  16. Hosseini H, Yasaei B, Ceram. Int., 24, 543 (1998)
  17. Lee MJ, Lim TY, Kim SK, Hwang J, Kim JH, Seo WS, Korean J. Mater. Res., 20(12), 654 (2010)