- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.20, No.8, 401-407, August, 2010
용액법으로 제작된 ZnSnO 박막트랜지스터의 전극 물질에 따른 계면 접촉특성 연구
Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors
E-mail:
We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.
Keywords:zinc tin oxide;metal-semiconductor contact;solution processing;work function;Kelvin probe force microscopy
- Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H, Nature, 432, 488 (2004)
- Fortunato E, Barquinha P, Pimentel A, Goncalves A, Marques A, Pereira L, Martins R, Thin Solid Films, 487(1-2), 205 (2005)
- Ong BS, Li CS, Li YN, Wu YL, Loutfy R, J. Am. Chem. Soc., 129(10), 2750 (2007)
- Lee DH, Chang YJ, Herman GS, Chang CH, Adv. Mater., 19(6), 843 (2007)
- Chang YJ, Lee DH, Herman GS, Chang CH, Electrochem. Solid State Lett., 10(5), H135 (2007)
- Jeong S, Jeong Y, Moon J, J. Phys. Chem. C, 112, 30 (2008)
- Koo CY, Kim D, Jeong S, Moon J, J. Korean Phys. Soc., 53(1), 218 (2008)
- Kim D, Koo CY, Song K, Jeong Y, Moon J, Appl. Phys. Lett., 95, 103501 (2009)
- Kudo A, Yanagim H, Ueda K, Hosono H, Kawazoe H, Yano Y, Appl. Phys. Lett., 75, 2851 (1991)
- Kim HK, Han SH, Choi WK, Seong TY, Appl. Phys. Lett., 77, 1647 (2000)
- Kim HK, Han SH, Seong TY, Choi WK, J. Electrochem. Soc., 148(3), G114 (2001)
- Kim C, Lee B, Yang HJ, Lee HM, Lee JG, Shin HJ, J. Kor. Phys. Soc., 47, S417 (2005)
- Woo K, Bae C, Jeong Y, Kim D, Moon J, J. Mater. Chem., 20, 3877 (2010)
- Lide DR, CRC Handbook of Chemistry and Physics, 89th ed., p.12, CRC Press, FL, USA (2008). (2008)
- Chaddha AK, Parsons JD, Kruaval GB, Appl. Phys. Lett., 66(6), 760 (1995)
- Park YS, Ryu SW, Yu JS, Kim HJ, Kim SH, Kim JH, Korean J. Mater. Res., 16(10), 629 (2006)
- Jackson WB, Herman GS, Hoffman RL, Taussig C, Braymen S, Jeffery F, Hauschildt J, J. Non-Cryst. Solids., 352, 1753 (2006)
- Jackson WB, Hoffman RL, Herman GS, Appl. Phys. Lett., 87, 193503 (2005)
- Kim SH, Maeng JT, Choi CJ, Leem JH, Han MS, Seong TY, Electrochem. Solid State Lett., 8(7), G167 (2005)
- Park Y, Choong V, Gao Y, Appl. Phys. Lett., 68, 2699 (1996)
- Kang D, Lim H, Kim C, Song I, Park J, Park Y, Chung J, Appl. Phys. Lett., 90, 192101 (2007)
- Jeong Y, Song K, Kim D, Koo CY, Moon J, J. Electrochem. Soc., 156(11), H808 (2009)
- Bae C, Kim D, Moon S, Choi T, Kim Y, Kim BS, Lee JS, Shin H, Moon J, ACS Appl. Mater. Interfaces, 2, 611 (2010)