- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.20, No.7, 345-350, July, 2010
Promoting Effect of MgO in the Photodegradation of Methylene Blue Over MgO/MWCNT/TiO2 Photocatalyst
E-mail:
For the present paper, we prepared MgO/MWCNT/TiO2 photocatalyst by using multi-walled carbon nanotubes (MWCNTs) pre-oxidized by m-chlorperbenzoic acid (MCPBA) with magnesium acetate tetrahydrate (Mg(CH2COO)2·4H2O) and titanium n-butoxide (Ti{OC(CH3)3}4) as magnesium and titanium precursors. The prepared photocatalyst was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The decomposition of methylene blue (MB) solution was determined under irradiation of ultraviolet (UV) light. The XRD results show that the MgO/MWCNT/TiO2 photocatalyst have cubic MgO structure and anatase TiO2 structure. The porous structure and the TiO2 agglomerate coated on the MgO/MWCNT composite can be observed in SEM images. The Mg, O, Ti and C elements can be also observed in MgO/MWCNT/TiO2 photocatalyst from EDX results. The results of photodegradation of MB solution under UV light show that the concentration of MB solution decreased with an increase of UV irradiation time for all of the samples. Also, the MgO/MWCNT/TiO2 photocatalyst has the best photocatalytic activity among these samples. It can be considered that the MgO/MWCNT/TiO2 photocatalyst had a combined effect, the effect of MWCNT, which could absorb UV light to create photoinduced electrons (e.), and the electron trapping effect of MgO, which resulted in an increase of the photocatalytic activity of TiO2.
- Kamat PV, Chem. Rev., 93, 267 (1993)
- Nakaoka Y, Nosaka Y, J. Photochem. Photobiol. A, 110, 299 (1997)
- Zhao J, Wu T, Wu K, Oikawa K, Hidaka H, Serpone N, Environ. Sci. Technol., 32, 2394 (1998)
- Park H, Choi WY, J. Phys. Chem. B, 108(13), 4086 (2004)
- Kamat PV, J. Phys. Chem. B, 106(32), 7729 (2002)
- Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madrao G, Langmuir, 20(7), 2900 (2004)
- Zou Z, Ye J, Sayama K, Arakawa H, Nature, 414, 625 (2001)
- Chen ML, Oh WC, Analytical Science & Technology, 21, 229 (2008)
- Chen ML, Zhang FJ, Oh WC, Analytical Science & Technology, 21, 553 (2008)
- Chen ML, Zhang FJ, Oh WC, J. Kor. Ceram. Soc., 45, 651 (2008)
- Charlier JC, Acc. Chem. Res., 35, 1063 (2002)
- Li XZ, Li FB, Yang CL, Ge WK, J. Photochem. Photobiol. A: Chem., 141, 209 (2001)
- Liang SHC, Gay ID, J. Catal., 101, 293 (1986)
- Copp AN, Am. Ceram. Soc. Bull., 74, 135 (1995)
- Yang PD, Lieber CM, Science, 273(5283), 1836 (1996)
- Summers GP, Wilson TM, Jeffries BT, Tohver HT, Chen Y, Abraham MM, Phys. Rev. B, 27, 1283 (1983)
- Rosenblatt GH, Rowe MW, Williams GP, Jr Williams RT, Chen Y, Phys. Rev. B., 39, 10309 (1989)
- Grant JL, Cooper R, Zeglinski P, Boas JF, J. Chem. Phys., 90, 807 (1989)
- Wang ZS, Huang CH, Huang YY, Hou YJ, Xie PH, Zhang BW, Cheng BW, Chem. Mater., 13, 678 (2001)
- Tada H, Kubo Y, Akazawa M, Ito S, Langmuir, 14(11), 2936 (1998)
- Tada H, Yamamoto M, Ito S, Langmuir, 15(11), 3699 (1999)
- Tada H, Yamamoto M, Ito S, J. Electrochem. Soc., 147(2), 613 (2000)
- Bandara J, Hadapangoda CC, Jayasekera WG, Appl. Catal. B: Environ., 50(2), 83 (2004)
- Chen ML, Bae JS, Oh WC, Bull. Kor. Chem. Soc., 27, 1423 (2006)
- Chen ML, Lim CS, Oh WC, J. Ceram. Process. Res., 8, 119 (2007)
- Oh WC, Zhang FZ, Chen ML, J. Ind. Eng. Chem., 16(2), 321 (2010)
- Yu Y, Yu JC, Chan CY, Che YK, Zhao JC, Ding L, Ge WK, Wong PK, Appl. Catal. B: Environ., 61(1-2), 1 (2005)
- Ghasemi S, Rahimnejad S, Setayesh SR, Rohani S, Gholami MR, J. Hazard. Mater., 172(2-3), 1573 (2009)
- Ghasemi S, Rahimnejad S, Rahman Setayesh S, Hosseini M, Gholami MR, Prog. React. Kinet. Mech., 34, 55 (2009)
- Oh WC, Chen ML, Bull. Kor. Chem. Soc., 29, 159 (2008)
- Chen ML, Zhang FJ, Oh WC, New Carbon Materials, 24, 159 (2009)
- Zhang FJ, Chen ML, Oh WC, Korean J. Mater. Res., 18(11), 583 (2008)
- Che M, Tench AJ, Adv. Catal., 31, 77 (1982)
- Pacchioni G, Ferrari AM, Catal. Today, 50(3-4), 533 (1999)