Korean Journal of Materials Research, Vol.20, No.5, 262-266, May, 2010
수열합성법으로 성장된 ZnO 나노구조의 성장조건에 따른 특성
Effects of Growth Conditions on Properties of ZnO Nanostructures Grown by Hydrothermal Method
E-mail:
ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at 150oC and different growth temperatures ranging from 100oC to 250oC with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL(photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at 100oC and the ZnO nanostructure grown at 150oC has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of 150oC, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.
- Vayssieres L, Keis K, Hagfeldt A, Lindquist SE, Chem. Mater., 13(12), 4395 (2001)
- Chen Y, Bagnall DM, Koh H, Park K, Hiraga K, Zhu Z, Yao T, J. Appl. Phys., 84(7), 3912 (1998)
- Zhou H, Wissinger M, Fallert J, Hauschild R, Stelzl F, Klingshirn C, Kalt H, Appl. Phys. Lett., 91, 181112 (2007)
- Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ, Appl. Phys. Lett., 81(19), 3648 (2002)
- Levy DH, Freeman D, Nelson SF, Cowdery-Corvan PJ, Irving LM, Appl. Phys. Lett., 92, 192101 (2008)
- Wu JJ, Liu SC, Adv. Mater., 14(3), 215 (2002)
- Qiu MX, Ye ZZ, Lu JG, He HP, Huang JY, Zhu LP, Zhao BH, Appl. Surf. Sci., 255(7), 3972 (2009)
- Heo YW, Tien LC, Norton DP, Kang BS, Ren F, Gila BP, Peaton SJ, Appl. Phys. Lett., 85(11), 2002 (2003)
- Han SK, Hong SK, Kim H, Lee JW, Lee JY, Korean J. Mater. Res., 16(6), 360 (2006)
- Fan XM, Lian JS, Guo ZX, Lu HJ, Appl. Surf. Sci., 239(2), 176 (2005)
- Guziewicz E, Kowalik IA, Godlewski M, Kopalko K, Ojoursinniy V, Wojcik A, Yatsunenko S, Lusakowska E, Paszkowicz W, Guziewicz M, J. Appl. Phys., 103, 033515 (2008)
- Li S, Zhou S, Liu H, Hang Y, Xia C, Xu J, Gu S, Zhang R, Mater. Lett., 61, 30 (2007)
- O'Brien S, Koh LHK, Crean GM, Thin Solid Films, 516(7), 1391 (2008)
- Jang JM, Kim JY, Jung WG, Thin Solid Films, 516(23), 8524 (2008)
- Kim SJ, Kim HH, Kwon JB, Lee JG, Lee BHOSG, Lee EH, Park SG, Microelectron. Eng., 87, 1534 (2010)
- Greene LE, Law M, Goldberger H, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P, Angew. Chem. Int. Ed., 42, 3031 (2003)
- Studeninkin SA, Golego N, Cocivera M, J. Appl. Phys., 84(4), 2287 (1998)
- Wang MS, Kim EJ, Chung JS, Shin EW, Hahn SH, Lee KE, Park CH, Phys. Stat. Sol. A, 203(10), 2418 (2006)
- Wu XL, Siu GG, Fu CL, Ong HC, Appl. Phys. Lett., 78(16), 2285 (2001)
- Djurisic AB, Leung YH, Tam KH, Hsu YF, Ding L, Ge WK, Zhong YC, K. Wong KS, Chan K, Tam HL, Cheah KW, Kwok WM, Phillips DL, Nanotechnology, 18, 095702 (2007)