화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.20, No.3, 137-141, March, 2010
Electrical Transport Properties and Magnetoresistance of (1-x)La0.7Sr0.3MnO3/xZnFe2O4 Composites
E-mail:
The (1-x)La0.7Sr0.3MnO3(LSMO)/xZnFe2O4(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.
  1. Xiong GC, Li Q, Ju HL, Greene RL, Venkatesan T, Appl. Phys. Lett., 66, 1689 (1995)
  2. Li XW, Gupta A, Xiao G, Gong GQ, Appl. Phys. Lett., 71, 1124 (1997)
  3. Hwang HY, Cheong SW, Ong NP, Batlogg B, Phys. Rev. Lett., 77, 2041 (1996)
  4. Mahesh R, Mahendiran R, Raychaudhuri, Rao CNR, Appl. Phys. Lett., 68, 2291 (1996)
  5. Jin S, Tiefel TH, Mccormack M, Fastnacht RA, Ramesh R, Chen LH, Science, 264(5157), 413 (1994)
  6. Casanove MJ, Roucau C, Baules P, Majimel J, Ousset JC, Magnoux D, Bobo JF, Appl. Surf. Sci., 188(1-2), 19 (2002)
  7. Chon GB, Koo BH, Lee CG, Korean J. Mater. Res., 16(1), 44 (2006)
  8. Balcells L, Carrillo AE, Martinez B, Fontcuberta J, Appl. Phys. Lett., 74, 4014 (1999)
  9. Petrov DK, Krusin-Elbaum L, Sun JZ, Field C, Duncombe PR, Appl. Phys. Lett., 75, 995 (1999)
  10. Gupta S, Ranjit R, Mitra C, Raychaudhuri P, Pinto R, Appl. Phys. Lett., 78, 362 (2001)
  11. Yan CH, Xu ZG, Zhu T, Wang ZM, Cheng FX, Huang YH, Liao CS, J. Appl. Phys., 87, 5588 (2000)
  12. Huang YH, Chen X, Wang ZM, Liao CS, Yan CH, Zhao HW, Shen BG, J. Appl. Phys., 91, 7733 (2002)
  13. Huang YH, Wang S, Luo F, Jiang S, Yan CH, Chem. Phys. Lett., 362(1-2), 114 (2002)
  14. Bo X, Li G, Qiu XQ, Xue YF, Li L, J. Solid State Chem., 3, 1038 (2007)
  15. Toledo-Antonio JA, Nava N, Martinez M, Bokhimi X, Appl. Catal. A: Gen., 234(1-2), 137 (2002)
  16. Goya GF, Rechenberg HR, Chen M, Yelon WB, J. Appl. Phys., 87, 8005 (2000)
  17. Zhou ZH, Xue JM, Chan HSO, Wang J, J. Appl. Phys., 90, 4169 (2001)
  18. Hochepied JF, Bonville P, Pileni MP, J. Phys. Chem. B, 104(5), 905 (2000)
  19. Hochepied JF, Pileni MP, J. Appl. Phys., 87, 2472 (2000)
  20. Yan CH, Huang YH, Chen X, Liao CS, Wang ZM, J. Phys.: Condens. Matter, 14, 9067 (2002)
  21. Huang Q, Li J, Huang ZJ, Gao XS, Ong CK, J. Appl. Phys., 90, 2924 (2001)
  22. Gaur A, Varma GD, J. Alloy. Comp., 453, 423 (2008)
  23. Rubinstein M, J. Appl. Phys., 87, 5019 (2000)
  24. Tian ZM, Yuan SL, Wang YQ, Liu L, Yin SY, Li P, Liu KL, He JH, Li JQ, Mater. Sci. Eng. B, 150, 50 (2008)