화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.19, No.10, 562-568, October, 2009
상 분리 폴리머 혼합액의 전기 방사에 의한 나노 포러스 탄소 파이버 제작
Fabrication of Nanoporous Carbon Fibers by Electrospinning
E-mail:
Electrospinning is a technique that produces sub-micron sized continuous fibers by electric force from polymer solutions or melts. Due to its versatile manufacturability and the cost effectiveness, this method has been recently adopted for the fabrication of one-dimensional materials. Here, we fabricated polyacrylonitrile (PAN) polymer fibers, from which uniform carbon fibers with diameters of 100-200 nm were obtained after carbonization at 800 oC in N2. Special emphasis was directed to the influence of the phase separated polymer solution on the morphology and the microstructure of the resulting carbon fiber. The addition of poly(styleneco-acrylonitile) (SAN) makes the polymer solution phase separated, which allows for the formation of internal pores by its selective elimination after electrospinning. XPS and Raman Spectroscopy were used to confirm the surface composition and the degree of carbonization. At the PAN:SAN = 50:50 in vol%, the uniform carbon fibers with diameters of 300~500 nm and surface area of 131.6 m2g-1 were obtained.
  1. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS, Science, 286(5442), 1127 (1999)
  2. Lee SM, Lee YH, Appl. Phys. Lett., 76(20), 2877 (2000)
  3. Chen Y, Shaw DT, Bai XD, Wang EG, Lund C, Appl. Phys. Lett., 78(15), 2128 (2001)
  4. Heine T, Zhechkov L, Seifert G, Phys. Chem. Chem. Phys., 6(5), 980 (2004)
  5. Zhao Y, Kim YH, Dillon AC, Heben MJ, Zhang SB, Phys. Rev. Lett., 94(15), 155504 (2005)
  6. Zuttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C, Schlapbach L, Int. J. Hydrog. Energy, 27(2), 203 (2002)
  7. de la Casa-Lillo MA, Lamari-Darkrim F, Cazorla-Amoros D, Linares-Solano A, J. Phys. Chem. B, 106(42), 10930 (2002)
  8. Fong H, Chun I, Reneker DH, Polymer, 40(16), 4585 (1999)
  9. Bazilevsky AV, Yarin AL, Megaridis CM, Langmuir, 23(5), 2311 (2007)
  10. Moon S, Choi J, Farris RJ, Fiber Polym., 9(3), 276 (2008)
  11. Zhou CF, Liu T, Wang T, Kumar S, Polymer, 47(16), 5831 (2006)
  12. Kim HS, J. Polym. Sci. B: Polym. Phys., 34(7), 1181 (1996)
  13. Gu SY, Ren J, Wu QL, Synth. Met., 155(1), 157 (2005)
  14. Zhang W, Wang Y, Sun C, J. Polym. Res., 14(6), 467 (2007)
  15. Lee JC, Lee BH, Kim BG, Park MJ, Lee DY, Kuk IH, Chung H, Kang HS, Lee HS, Ahn DH, Carbon, 35(10-11), 1479 (1997)
  16. Kim C, J. Power Sources, 142(1-2), 382 (2005)
  17. Li D, Xia Y, Nano Lett., 3(2), 143 (2003)
  18. Hohman MM, Shin M, Rutledge G, Brenner MP, Phys. Fluids, 13(8), 2221 (2001)
  19. Park S, Lee DY, Lee MH, Lee SJ, Kim BY, J. Kor. Ceram. Soc., 42(8), 548 (2005)
  20. Deitzel JM, Kosik W, McKnight SH, Tan NCB, DeSimone JM, Crette S, Polymer, 43(3), 1025 (2002)
  21. Zhu Y, Zhang JC, Zhai J, Zheng YM, Feng L, Jiang L, Chem. Phys. Chem, 7(2), 336 (2006)
  22. Lee WH, Lee JG, Reucroft PJ, Appl. Surf. Sci., 171(1), 136 (2001)
  23. Darkrim FL, Malbrunot P, Tartaglia GP, Int. J. Hydrog. Energy, 27(2), 193 (2002)
  24. Wang Y, Serrano S, Santiago-Aviles JJ, Synth. Met., 138(3), 423 (2003)
  25. Kim C, Park SH, Cho JI, Lee DY, Park TJ, Lee WJ, Yang KS, J. Raman Spectrosc., 35(11), 923 (2004)
  26. Raitses Y, Skinner CH, Jiang F, Duffy TS, J. Nucl. Mater., 375(3), 365 (2008)
  27. Ferrari AC, Robertson J, Phys. Rev. B, 64(7), 075414 (2001)