화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.19, No.8, 427-431, August, 2009
나노선 형상의 산화아연 박막의 수소 가스 감지 특성
Hydrogen Gas Sensing Characteristics of ZnO Wire-like Thin Films
E-mail:
ZnO wire-like thin films were synthesized through thermal oxidation of sputtered Zn metal films in dry air. Their nanostructure was confirmed by SEM, revealing a wire-like structure with a width of less than 100 nm and a length of several microns. The gas sensors using ZnO wire-like films were found to exhibit excellent H2 gas sensing properties. In particular, the observed high sensitivity and fast response to H2 gas at a comparatively low temperature of 200 oC would lead to a reduction in the optimal operating temperature of ZnO-based H2 gas sensors. These features, together with the simple synthesis process, demonstrate that ZnO wire-like films are promising for fabrication of low-cost and high-performance H2 gas sensors operable at low temperatures. The relationship between the sensor sensitivity and H2 gas concentration suggests that the adsorbed oxygen species at the surface is O..
  1. Seiyama T, Kato A, Nagatani M, Anal. Chem., 34, 1502 (1962)
  2. Aslam M, Chaudhary VA, Mulla IS, Sainkar SR, Mandale AB, Belhekar AA, Vijayamohanan K, Sens. Actuators A, 75, 162 (1999)
  3. Min Y, Tuller HL, Palzer S, Wollenstein J, Bottner H, Sens. Actuators B, 93, 435 (2003)
  4. Look DC, Mater. Sci. Eng. B, 80, 383 (2001)
  5. Basu S, Dutta A, Mater. Chem. Phys., 47, 93 (1997)
  6. Koshizaki N, Oyama T, Sens. Actuators B, 66, 119 (2000)
  7. Xu J, Pan Q, Shun Y, Tian Z, Sens. Actuators B, 66, 277 (2000)
  8. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL, Appl. Phys. Lett., 84, 3654 (2004)
  9. Brilis N, Romesis P, Tsamakis D, Kompitsas M, Superlattices Microstruct., 38, 283 (2005)
  10. Sadek AZ, Wlodarski W, Kalantar-zadeh K, Choopun S, Sensors 2005 IEEE, 1326 (2005)
  11. Wang HT, Kang BS, Ren D, Tien LC, Sadik PW, Norton DP, Pearton SJ, Lin J, Appl. Phys. Lett., 86, 243503 (2005)
  12. Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J, Appl. Phys. Lett., 87, 222106 (2005)
  13. Wang JX, Sun XW, Yang Y, Huang H, Lee YC, Tan OK, Vayssieres L, Nanotechnology, 17, 4995 (2006)
  14. Tang H, Yan M, Zhang H, Li S, Ma X, Wang M, Yang D, Sens. Actuators B, 114, 910 (2006)
  15. Park SM, Zhang SL, Huh JS, Korean J. Mater. Res., 18(7), 367 (2008)
  16. Jung J, Song H, Kang Y, Oh D, Jung H, Cho Y, Kim D, Korean J. Mater. Res., 18(10), 529 (2008)
  17. Cho S, Ma J, Kim Y, Wong GKL, Ketterson JB, Appl. Phys. Lett., 75, 2761 (1999)
  18. Wang YG, Lau SP, Lee HW, Yu SF, Tay BK, Zhang XH, Hng HH, Appl. Phys. Lett., 94, 322 (2003)
  19. Zhao J, Hu LZ, Wang ZY, Zhao Y, Liang XP, Wang MT, Appl. Surf. Sci., 229(1-4), 311 (2004)
  20. Park SY, Jung H, Ahn E, Nguyen LH, Kang Y, Kim H, Kim D, Korean J. Mater. Res., 18(12), 655 (2008)
  21. Cullity BD, Elements of X-ray Diffraction, p. 102, Addison-Wesley, Reading, (1978). (1978)
  22. Che M, Trench AJ, Adv. Catal., 31, 77 (1982)
  23. Scott RWJ, Yang SM, Chabanis G, Coombs N, Williams DE, Ozin GA, Adv. Mater., 13(19), 1468 (2001)
  24. Naisbitt SC, Pratt KFE, Williams DE, Parkin IP, Sens. Actuators B, 114, 969 (2006)
  25. Patil DR, Patil LA, Sens. Actuators B, 13, 546 (2007)